JMJ COLLEGE FOR WOMEN (AUTONOMOUS) :: TENALI-522202

I Year B.Com(CBCS).,General I Semester

Paper-101 Fundamentals of Accounting-I PPW :06 Hours

Unit-I – **Introduction to Accounting**

Need for Accounting – Definition – Objectives, Advantages – Book keeping and Accounting– Accounting concepts and conventions - Accounting Cycle - Classification of Accounts and its rules - Double Entry Book-keeping - Journalization - Posting to Ledgers, Balancing of ledger Accounts (problems).

Unit –II: Subsidiary Books:

Types of Subsidiary Books - Cash Book, Three-column Cash Book- Petty cash Book (Problems).

Unit-III: Trail Balanceand Rectification of Errors:

Preparation of Trail balance - Errors – Meaning – Types of Errors – Rectification of Errors (Problems)

Unit-IV- Bank Reconciliation Statement:

Need for bank reconciliation - Reasons for difference between Cash Book and Pass Book Balances- Preparation of Bank Reconciliation Statement- Problems on both favorable and unfavourable balances.

Unit -V: Final Accounts:

Preparation of Final Accounts: Trading account – Profit and Loss account – Balance Sheet – Final Accounts with adjustments (Problems). Final Accounts with tally.

Reference Books

- 1. T.S.Reddy&A. Murthy, Financial Accounting, Margham Publications
- 2. R L Gupta & V. K Gupta, Principles and Practice of Accounting, Sultan Chand & Sons
- 3. S.P. Jain & K.L Narang, Accountancy-I, Kalyani Publishers
- 4. Tulasian, Accountancy -I, Tata McGraw Hill Co.
- 5. V.K.Goyal, Financial Accounting, Excel Books
- 6. K. Arunjothi, Fundamentals of Accounting; Maruthi Publications

JMJ COLLEGE FOR WOMEN TENALI (AUTONOMOUS) I B.Com General

Fundamentals of Accounting - I

Semester I

Time:3Hrs.

I.

Section – A

Max.Marks:70

 $10 \times 1 = 10M$

Answer All of the following 1. $v \downarrow \Box + \{ + > \times \theta T \Box \sigma \mathfrak{I} \cap \equiv + | \mathfrak{E} T T. \}$

- 2. $\Box \varepsilon \sigma \Box \diamond v + \phi \geq \exists T \{ ? \}$
- 3. $\mu < \Box T \sigma \mathfrak{I} T | \Box < \Box T \widehat{\Pi} \theta T \Box \sigma \mathfrak{I} \cap = + | \Box \lor \epsilon T T.$
- 4. $v\delta \Box$ \therefore T ={"... $v+\phi$ } \cong \exists T{ (?
- 5. $\nu + \downarrow \leq \Delta'' \theta T \Box \sigma \mathfrak{I} \cap \equiv + |\Box \vee \varepsilon T T.$
- 6. $\psi \square \delta \square | \exists \downarrow \leq Y''^{TM} \square \oplus \leq \square > \bullet \therefore \delta \square \sqrt{|TM|} + | \psi \square \phi \langle TT\varepsilon TT.$
- 7. B.R.S. $\theta T \Box \sigma \mathfrak{I} \cap = + |\Box \vee \varepsilon T T$.
- 8. $\Box \geq T... \Box \& \Box \varepsilon \leftrightarrow \phi \langle T + \nu \theta \rangle \pm H \exists T?$

9.
$$\delta \longrightarrow \Box \uparrow + \mathsf{TM} \langle \downarrow \mathsf{TM} \langle \leftrightarrow \langle \wp \chi \sqsubseteq \Box \Box \Box \sigma \mathfrak{I} \cap \equiv + |\Box \lor \varepsilon TT.$$

10. & $\left(\wedge H \wp \left(\wedge \nu \theta \right) \pm H \right) \exists T?$

Section - B

II. Answer any two of the following

1

$2 \times 10 = 20M$

11. $\downarrow \downarrow \uparrow \leftarrow \varepsilon \leftrightarrow \varepsilon \varsigma \Box \ \neg \neg \sigma \Box \ \therefore \theta T \ v \varepsilon \delta \Box \ \sigma \Im \psi \downarrow T \rightarrow \theta \ \delta \Box \ \varsigma \Box \ \neg \neg \phi \land T = \{" \dots \land \downarrow \not = \downarrow \phi \land T + \& \Box \ .$ 2007

 $[3\theta \cup$

 $\beta \subset \{ \{ \land \theta T + \& \Box \ \delta \Box \ \sigma \Im T \oplus \leq \Box \ \sigma \Im \sqrt{.1,00,000, \varepsilon \sigma \Im} \} \downarrow \leq \Box \lor \& \Box \ \kappa \sum \neg + \geq T \ 10\% \}$

- σℑψ |Tωτ ν∃T□ θ δ□ σℑT⊕≤□ σ σℑ√.20,0003
- $\infty \varepsilon \mid \Box + \mid = \theta \delta \Box \sigma \mathfrak{T} \oplus \leq \Box \sigma \mathfrak{T} \sqrt{.80,000}$ 10
- $v\theta T = \varepsilon T \oplus \le v \exists T \oplus \theta \otimes \sigma \Im T \oplus \le \sigma \Im \sqrt{.24,000}$ 19
- $\beta \subset \{ \{ \land \oplus \leq \square \ \delta \square \ \sigma \Im T \oplus \leq \square \ \psi \square \ | \square \ \delta \square \ T : T \ \sigma \Im \sqrt{.10,000} \} \}$ 20
- 24 $v \varepsilon T \sigma \Psi \oplus \leq \Box |\Box + | = \theta \delta \Box \sigma \mathfrak{T} \oplus \leq \Box \sigma \mathfrak{T} \sqrt{.12,000}$
- $\sigma \subseteq \sigma \otimes \langle n \oplus S \subseteq n \oplus S \subseteq n \oplus S \subseteq n \oplus S = \sigma \Im \sqrt{16,000}$ 31

12. $\Box \downarrow \downarrow \downarrow + \exists \varepsilon \sigma \Box \therefore \delta \Box \varsigma \Box \lor \phi \langle T + \mathsf{TM} \wp \equiv \because \sigma \mathfrak{I} \theta \rangle \bullet \langle \Box T \equiv \{", \ldots \lor \mathsf{TM} \langle \phi \langle \sqrt{\sigma \mathfrak{I}} T \# \downarrow \delta - \cdots \rangle \rangle$, $\Box :: \cap {}^{\mathrm{TM}} \bot := + \& \Box$. 2007

 $\pi H \Box 1 \qquad \epsilon \equiv \subset \theta \; \theta > \bullet < \Box \; T \; \sigma \Im \sqrt{.1,000}$

- 2 $\operatorname{TM}(\beta \subseteq :: K\sigma \Im T \subset :: T \sigma \Im \sqrt{.80}$
- 8 $| \Box \downarrow \leq \geq 0 \therefore \downarrow = \sigma \Im \oplus \leq \Box \# \downarrow *' + \equiv \theta \sim \sigma \Im \sqrt{.100}$
- 12 $\epsilon \Pi^{TM} \langle H \Box :: \# \lfloor *' + \mid \Box \lor \sigma \Im \sqrt{.40}$
- 16 $\sigma \Im \psi \Box \Delta'' K \sigma \Im T \subset :: T \sigma \Im \sqrt{.30}$
- $20 \qquad \exists \leq H \rfloor \cap \varphi \langle TH \Box \diamond K \sigma \Im T \subset \therefore T \sigma \Im \sqrt{.44}$
- 25 $| \square \varphi(\sqrt{\Delta} K\sigma \Im T \subset :: T \sigma \Im \sqrt{.160})$
- 27 $\operatorname{TM}(\beta \subseteq)^{\mathsf{TM}} \operatorname{KoST} \subset :: \operatorname{T} \sigma \mathfrak{I} \sqrt{.100}$
- $28 \qquad \forall \exists \mathsf{TM} \langle \mathsf{H} \Box \ :: \# \lfloor *' + \vert \Box \lor \sigma \Im \sqrt{.20}$
- 29 $\phi \supset * | > \pm \epsilon TT K \sigma \mathfrak{I} \subset \therefore T \sigma \mathfrak{I} \sqrt{.40}$
- 30 $\operatorname{TM}(\beta \subseteq)'' \operatorname{KoST} \subset :: T \sigma \mathfrak{I} \sqrt{.6}$

 $13. | \downarrow| + \sim \mathsf{TM} \langle |\Box \Box :: \theta T \delta \Box \varepsilon] + \equiv \nu H \Box \varepsilon T^{\mathsf{TM}} \Psi Y''^{\mathsf{TM}} \Box \theta T \mathsf{TM} \langle \varphi \langle \sqrt{\sigma} \mathfrak{T} \# \rfloor \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \#] \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \#] \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \#] \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \#] \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \#] \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \#] \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \#] \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \#] \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \#] \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \#] \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \#] \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \#] \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \#] \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \#] \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \#] \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \#] \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \#] \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \#] \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \#] \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \#] \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \#] \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \#] \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \# \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \#] \varphi \langle T + \& T \rangle \langle \varphi \rangle \langle \nabla \mathfrak{T} \# \rangle \langle \varphi \rangle$

(µ)

□.

()

 $\begin{array}{c} \nu \sigma \Im T \Delta \Psi \ \theta T + \& \Box \quad \epsilon \equiv \subset \theta _ \therefore T' \ \sigma \Im \sqrt{.1,000, \# *' + |\Box \lor _} \therefore T' \therefore T \ |\Box \lor \delta \Box \ | \\ \downarrow \leq + \not \downarrow \downarrow \psi \Box \ \delta \longrightarrow H \Box \ \sigma \Im T. \end{array}$

(δ—)

$$\begin{split} \epsilon TT + < \Box \ T > \pm \ \# \lfloor *' + \equiv \theta \ \nu < \lfloor \Uparrow \ \sigma \Im \sqrt{.500} \ \epsilon TT + < \Box \ T \oplus \le \Box \ \rho \delta \Box \ T \downarrow = \Box \ \psi \lfloor \therefore' \\ \& \Box \ + \ \epsilon T] \equiv H \Box \ \sigma \Im T. \end{split}$$

(&□)

$$\label{eq:constraint} \begin{split} \varsigma \Box ~~"] \lrcorner \downarrow \big(~~ \# \big(*' + \equiv \theta ~ \nu < \lfloor \Uparrow ~ \sigma \Im ~ \sqrt{.5,000} ~ \angle] ~ Y''^{TM} \Box ~ \oplus \leq \Box ~~ \& \lfloor \{ \land ~ \# \lrcorner \& \longrightarrow H \Box ~ \sigma \Im ~ T. \end{split}$$

 $\begin{array}{c|c} (\Box \) \ \nu \epsilon T \Box \ \downarrow \pm \therefore \ |\Box \ \lor \delta \Box \ \middle| \ \downarrow \leq + \sigma \Im \sqrt{.2,000} \ \mu \oplus \leq \Box \ \neg \epsilon > \pm \oplus \leq \Lambda \& \Box \ H \Box \ \sigma \Im T. \\ (\mu |\Box \ \tau) \end{array}$

Section - C

III. Answer any two of the following

2 x 20 = 40M

 $\begin{array}{l} 14. \quad \left| \downarrow\right| + \sim \exists \epsilon \sigma \Box \ \therefore \ \theta T + \& \Box \ 31.3.2007 \ H \Box \ \left\{ \left[\downarrow\right] \ \epsilon \sigma \Im \ \left| \downarrow \leq \Box \ \lor, \ \right\}'' \upsilon \ \left[\Box \ \theta \chi \underline{\subseteq} \dots \therefore \right] \right\} \\ Y''^{TM} \Box \ \epsilon T] \phi \langle TT \Box \ ^{TM} \Box \ \epsilon T] \phi \langle TT \Box \ ^{TM} \Box \ \epsilon T] \phi \langle T + \& \Box \ . \end{array}$

∃εσ□ ∴Τ	σℑ√.	σℑ√.
$\epsilon T < \int \Box \theta +$		8,500
β⊆'+≥T	1,900	
∣β⊆σℑ+υ∫□ ∣□ σℑΤ⊕≤□	2,920	
$T:\pm L = T3v TT \rangle \phi [T3 \Downarrow \Box \leftarrow = < T\theta = L$	20,724	23,812
$\kappa J + TM \langle \psi \Box \& \Box \downarrow \pm \therefore T$	1,420	
$= \theta T \{ :: T \forall \Box \mid \Box \land \Box \Box T : T \epsilon T] \phi \langle TT \lor cT \Box \downarrow \pm : T \rangle T $	420	582
$\Box \mid \Box \delta \Box T : T$	880	
κ⊆<∫□ σℑΔΚσℑΤ⊂∴Τ	240	
$\nu < l \uparrow$	400	
$\neq \sigma \geq T \dots, \Box \ \theta T \Box \ \therefore T$		160
$\nu \square + \{ \delta \square T \mid \odot \exists T \phi \langle T + $		480
$\upsilon'' + \bigoplus \leq \Box \zeta \varepsilon \sigma \Psi \mid \& \Box \mid \Box . \pi$	344	
$\sigma \Box \Box$ ப" பி Υ ் T	8,400	4,000
$\Box \ TT\Delta > \bullet \delta \Box \ T \therefore T \ \varepsilon T] \phi \langle TT \ \Box \ TT\Delta < \Box \ TM \langle \therefore T $	96	
$\# \downarrow \rightleftharpoons \land \ominus \diamond \bullet < \Box T$		210
σ□ □ υ″⊣Υ∴]∪σℑΤ∩		
	37,744	37,744

 $\nu < \Box \theta | \Box \lor \delta \Box \epsilon \sqrt{\# \Box} \sigma \Im \epsilon TT$

- $1. \qquad \beta \subseteq' + \geq T \Box \mid \prod \mathsf{TM} \langle \sigma \mathfrak{I} \mathsf{T} \rangle \bullet \mathfrak{K} \Box \ \therefore \ 10\% \ \delta \Box \ + \epsilon^{\mathsf{TM}} \langle \Diamond \sigma \Box \ \Box \ \downarrow f$
- $2. \qquad \Box \ TT\Delta | > \bullet \delta \Box \ T | \therefore \ \Box \ |\prod 5\% \ \sigma \Box \ \Box \ \upsilon'' \downarrow \Upsilon \therefore \ \Box \ \sim \int \Box \ \cong \sigma \Box \ \in \geq T \ \# \lrcorner \phi \langle T + \& \Box \ .$

3. $\# \downarrow *' + \# \langle \epsilon :: \delta \longrightarrow 0 \lor \langle \uparrow \uparrow \sigma \Im \sqrt{.80} \rangle$

- 4. $\epsilon TT + \langle \Box T \rangle \pm \# \langle *' + \equiv \theta \mid \Box \theta T \Box :: T \sigma \Im \sqrt{..160}$
- 5. $\delta \Box \ \sigma \Im T \oplus \leq \Box \ \Box \ c \wedge \epsilon \sqrt{]} \subset 310 \ \sigma \Im \sqrt{.3,400}$
- 6. $\varepsilon TT + \langle \Box T \rangle \pm \varepsilon \equiv \Box \theta \nu | \Box | + \{ \delta \tau | | \Box \exists T \phi \langle T + \sigma \Im \sqrt{.40} \}$

16.

 $\sim > \bullet T \varepsilon \square \equiv \subset \theta \exists \varepsilon \sigma \square \therefore \theta T + \& \square \varepsilon T \sqrt{\&} \square T \varepsilon \sigma \Im T \delta \square \therefore \theta > \bullet < \square T \equiv \{"...\theta T {}^{\mathsf{TM}} \langle \varphi \langle \sqrt{\sigma} \Im T \# \rfloor \varphi \langle TT \varepsilon TT.$

2003

$$\begin{split} \varepsilon \sqrt{]} \subset 1 & \# \downarrow \rightleftharpoons | \not \subset | \forall \sigma \Im \sqrt{.} 15,000 \\ 1 & \upsilon'' \leftrightarrow + \oplus \le | \not \subset | \phi \Rightarrow \bullet < \Box T (\zeta \varepsilon \sigma \Psi | \& \Box | \Box \tau ...) \sigma \Im \sqrt{.}8,000 \\ 3 & \theta > \bullet < \Box T \lor \varepsilon T \Box \downarrow \pm \therefore T \sigma \Im \sqrt{.}8,000 \\ 5 & \varsigma \Box ''] \theta T + \& \Box \sigma \Im \sqrt{.}9,000 \therefore \oplus \le \Box (\oplus \le \Box \neg \sigma \Box > \pm \lor \theta T \varepsilon T \Leftarrow + = \theta \\ \& \Box \kappa \sum \neg + \ge T \sigma \Im \sqrt{.}100 \\ 7 & \Box | \Pi \theta \Box | \sigma = \neg \theta T \Box \# \downarrow \oplus \le \Box \neg \varepsilon \delta \Box \sqrt{.} T \Box \exists T^{TM} \langle | + \upsilon'' \leftrightarrow + \oplus \le \Box \oplus \le \Box \\ | \Box + | \Box \& \Box \psi \lfloor T \rightarrow \theta \sim \\ 10 & | \Box \downarrow \Box \# \langle \sigma \Im T \downarrow = \theta T > \wp \therefore T \sigma \Im \sqrt{.}1,000 \end{split}$$

15 $J \pm \sigma \square \leftrightarrow \therefore \phi \langle T + \square \exists T^{TM} \langle | + \upsilon'' \leftrightarrow + \oplus \leq \square \theta T + \& \square \rho \delta \longrightarrow \theta \sim \sigma \Im \sqrt{.3}, 0$ 00 20 $J \leq \square \omega \square \square \square \exists \sigma \Im T > \pm \# \lfloor \oplus \leq \square \neg \land \square \cap \sigma \square \upsilon'' \leftrightarrow + \oplus \leq \square \not \downarrow \angle \cup \varepsilon T \# \rfloor \delta$ $-+\sim \sigma \Im \sqrt{.2,000}$ 24 $\upsilon'' \leftrightarrow + \oplus \leq \square \not \downarrow \angle \cup \varepsilon T \# \rfloor \delta \longrightarrow \theta \geq \bullet \lt \square T \sigma \Im \sqrt{.1,000}$ 30 $\Im^{TM} \square \therefore \# \lfloor *' + \square \lor \sigma \Im \sqrt{.2,500}$ 30 $\upsilon'' \leftrightarrow + \oplus \leq \square \# \prod \downarrow \bullet \therefore T \sigma \Im \sqrt{.200}$

@@@@

JMJ COLLEGE FOR WOMEN (AUTONOMUS) :: TENALI-522202

I Year B.Com (CBCS)., Genaral & Restructured (Computer Applications)

I Semester

Paper-102

Business Organization

PPW :06 Hours

Unit-I – Introduction

Concepts of Business, Trade , Industry and Commerce – Features of Business - Trade Classification - Aids to Trade – Industry – Classification – Relationship of Trade, Industry and Commerce .

Unit II- Business Functions and Entrepreneurship

Functions of Business and their relationship - Factors influencing the choice of suitable form of organization – Meaning of Entrepreneurship – Characteristics of a good entrepreneur - Types – Functions of Entrepreneurship.

Unit –III – Forms of Business Organizations

Sole Proprietorship – Meaning – Characteristics – Advantages and Disadvantages – Partnership -Meaning – Characteristics- Kinds of partners – Advantages and Disadvantages – Partnership Deed – Hindu-undivided Family – Cooperative Societies.

Unit-IV- Joint Stock Company

Joint Stock Company – Meaning – Characteristics – Advantages – Kinds of Companies - Differences between Private Ltd and Public Ltd Companies.

Unit-V- Company Incorporation

Preparation of important Documents for incorporation of Company – Memorandum of Association – Articles of Association – Differences Between Memorandum of Association and Articles of Association - Prospectus and its contents.

Reference Books

- 1. C.D.Balaji and G. Prasad, Business Organization Margham Publications, Chennai.
- 2. R.K.Sharma and Shashi K Gupta, Business Organization Kalyani Publications.
- 3. C.B.Guptha, Industrial Organization and Management, Sultan Chand.
- 4. Y.K.Bushan, Business organization and Management, Sultan Chand.
- 5. Sherlekar, Business Organization and Management, Himalaya Publications.

JMJ COLLEGE FOR WOMEN TENALI (AUTONOMOUS) I B.Com General & Computers Business Organisation Semester I

Time:3Hrs.

Section – A

10 x 1 = 10M

Max.Marks:70

- I. Answer All of the following
 - 1. What is meant by Business? $\Psi \Box \leftrightarrow \beta \subset \sigma \Im \epsilon TT \ \nu \theta > \pm H \exists T?$
 - 2. Write about foreign trade? $\exists < \downarrow o \ \varepsilon \sigma \Im \mid \downarrow \leq + > \bullet T] + \equiv | \psi \Box \phi \langle T + \& \Box .$
 - 3. Mention the procedure of registration of partnership. $\upsilon \int = \kappa = c T \leftrightarrow \delta = +\delta = \emptyset = 0$ $\square = \delta = 0$ $\square = 0$
 - 4. What is public limited Company? $|\Box \quad ' \downarrow] * \exists T \phi \supset \& \Box \downarrow \leq +\Box \mid | \nu \theta > \pm H \exists T?$
 - 5. Write types of Companies. $\downarrow \leq +\Box \mid \mid \downarrow \not\subset \sigma \Im \downarrow \pm \therefore \theta T \mid \forall \Box \phi \langle T + \& \Box \rangle.$
 - 6. Write two features of joint Hindu family? $\nu \exists \upsilon \cap \Box \downarrow \leq | \varsigma _"+<\Box \lor \oplus \leq \Box \geq T+\Box + \varphi (TT \downarrow \leq \neg \Re \sigma + \&\Box T \therefore \downarrow \leq \Box \Delta" \therefore \theta T | \psi$ $\Box \phi \langle TT \varepsilon TT.$
 - 7. Define Prospectus. $|\Box| = \frac{1}{2} \frac{1}{2}$
 - 8. Who is active partner? $\delta \Box \mid \downarrow \oint \langle T \upsilon \mid " > \bullet \delta \Box T \mid \& \Box T \upsilon \theta > \pm \mu \epsilon \sigma \Im T ?$
 - 9. Define entrepreneur.

 $\epsilon \leftrightarrow \epsilon \kappa \underline{\subset} \varnothing | \Box \oplus \underline{\leq} \Box \& \Box T \Box \sigma \mathfrak{I} \cap \equiv + \# \langle + \& \Box .$

10. How is the liability of Sole Trader.

 $\kappa J + \mathsf{TM} \langle \psi \Box \leftrightarrow \beta \subseteq] \phi [TT J \leq \neg \Box TT \Delta \upsilon'' < \Box \leftrightarrow \mathsf{TM} \langle \mu \geq T\epsilon + \{ [\sim?] \} \langle \mu \geq T \rangle \}$

Section - B

II. Answer any two of the following

2 x 10 = 20M

 $2 \times 20 = 40M$

- 11. Distinguish between public limited Company and Private limited Company.
 - <→ □)>T3 || □+≥↓ □&⊂φTE* T≤[ψ| □ | TT)φ[T3 || □+≥↓ □&⊂φTE* [↓'_ □|
- $\therefore \epsilon \leftrightarrow^{TM} \Box \leftrightarrow \kappa \subseteq \therefore \theta T \exists \epsilon] + \# \langle + \& \Box \rangle$.
- 12. Explain features, merits and demerits of Partnership.

 $\begin{array}{c} \upsilon \int " > \bullet \kappa \underline{\frown} \kappa \underline{\frown} \kappa \underline{\frown} \psi \Box \leftrightarrow \beta \underline{\frown} \sigma \mathfrak{I} + \varphi \big[TT \underline{\dashv} \underline{\leq} \neg \therefore \underline{\dashv} \underline{\leq} \Box \Delta " \therefore T, \big\} "\upsilon \int \Box \theta \chi \underline{\frown} \ldots \vdots \theta \\ T \exists \epsilon] + \# \langle + \& \Box \end{array} .$

13. Explain the merits and demerits of Sole Trade.

 $\kappa J + \mathsf{TM} \langle \psi \Box \leftrightarrow \beta \subseteq \sigma \Im \epsilon TT \rangle "\upsilon ("\theta \chi \subseteq \ldots : \theta T \exists \epsilon] + \# \langle + \& \Box .$

Section - C

III. Answer any two of the following

- 14. Explain features, functions and Types of entrepreneur. $\epsilon \leftrightarrow \epsilon \kappa \subseteq \emptyset | \Box \oplus \leq \Box \Box \therefore \downarrow \leq \Box \Delta'' \therefore T, \exists < (\Box T \therefore, \sigma \Im \downarrow \pm \therefore \theta T \exists \epsilon] + \# \langle + \& \Box \rangle$
- 15. Write features merits and demerits of a Company.

 $\downarrow \leq +\Box \mid \mid \therefore \downarrow \leq \Box \; \Delta'' :: T, \; \rangle'' \upsilon \; ('' \theta \chi \subseteq \ldots : \theta T \; \exists \varepsilon] + \# \langle + \& \Box \; .$

16. Explain types of partners and write about partnership deed.

 $\begin{array}{c} \upsilon \left(">\bullet \delta \Box \ T \right| \therefore \left\} \not\subset \sigma \mathfrak{I} \downarrow \pm \ldots \theta T \ \exists \varepsilon] + \equiv, \upsilon \left(">\bullet \kappa \underline{\frown} \circ T \leftrightarrow \Box \ |\Box \ \in + < \Box \ + > \bullet T] + \equiv \\ \exists \varepsilon] + \# \langle + \& \Box \ . \end{array} \right.$

@@@@

J.M.J.College for Women (A), Tenali- 522202

I Year B.Com (CBCS)., General II Semester

•

Paper -104 Fundamentals of Accounting-IIPPW :06 Hours

Unit-I:Depreciation

Meaning of Depreciation - Methods of Depreciation: Straight line - Written Down Value– Sum of the Years' Digits - Annuity and Depletion (Problems).

Unit-II:Provisions and Reserves

Meaning – Provision vs. Reserve – Preparation of Bad debts Account – Provision for Bad and doubtful debts – Provision for Discount on Debtors – Provision for discount on creditors - Repairs and Renewals Reserve A/c (Problems).

Unit-III: Bills of Exchange

Meaning of Bill – Features of bill – Parties in the Bill – Discounting of Bill – Renewal of Bill – Entries in the books of Drawer and Drawee (Problems).

Unit-IV: Consignment Accounts

Consignment - Features - Proforma invoice - Account sales – Del-credreCommission - Accounting treatment in the books of consigner and consignee - Valuation of closing stock - Normal and Abnormal losses (Problems).

Unit-V: Joint Venture Accounts

Joint venture - Features - Differences between Joint-venture and consignment – Accounting procedure - Methods of keeping records (Problems).

Reference Books:

- 1. R.L. Gupta & V.K. Gupta, Principles and Practice of Accounting, Sultan Chand
- 2. T. S. Reddy and A. Murthy Financial Accounting, Margham Publications.
- 3. S.P. Jain & K.L Narang, Accountancy-I, Kalyani Publishers.
- 4. Tulsan, Accountancy-I, Tata McGraw Hill Co.
- 5. V.K. Goyal, Financial Accounting, Excel Books
- 6. T.S. Grewal, Introduction to Accountancy, Sultan Chand & Co.
- 7. Haneef and Mukherjee, Accountancy-I, Tata McGraw Hill
- 8. Arulanandam, Advanced Accountancy, Himalaya Publishers
- 9. S.N.Maheshwari&V.L.Maheswari, Advanced Accountancy-I, Vikas Publishers.

JMJ COLLEGE FOR WOMEN TENALI (AUTONOMOUS) I B.Com General Fundamentals of Accounting - II Semester II

Time:3Hrs.

Section – A

10 x 1 = 10M

Max.Marks:70

I. Answer All of the following

1. $\delta \longrightarrow \Box \uparrow + TM \land \downarrow TM \land \leftrightarrow \land \wp \gamma \Box \Box \Box \sigma \Im \cap = + \Box \lor \varepsilon TT.$

- 2. $\downarrow \leq H \Box \Box \delta \prod H \Box \psi (T + \geq T \nu \theta > \pm \Box | \exists T?)$
- 3. $\Box \in T \Box \& \Box \forall \Box \leftrightarrow \beta \subseteq \sigma \Im \in T T \theta T \Box \sigma \Im \cap = + |\Box \lor \in T T.$
- 4. $\downarrow \leq H \square \land \Box H \square \lor \lor \Box T + \geq T \square \& \square \lor \square & \blacksquare \lor \Box \Box \Box \Box \Box \Leftrightarrow > \bullet \therefore \Box \square$ $\& \square \therefore T \Re \sigma + \& \square + \{ \Box \Box \Box \lor \square + \& \square . \}$
- 5. $\delta \varnothing \sigma \Im \psi \Box \ \sigma TT < \Box \ \therefore |\Box < \Box \ \Uparrow \Leftarrow \downarrow \square \langle \sigma \Im T \rangle \bullet T < \Box \ \therefore \oplus \le \Box \ > \bullet \therefore \ \delta \Box \ \sqrt{| \ \mathsf{TM}} \langle \psi \rfloor T$
- 6. $v \in T \square t :: |\square \{ \Upsilon ... v \theta > \pm H \rfloor \exists T ?$
- 7. $\zeta \epsilon \sigma \Psi \Re \sigma \prod \& \Box +> \times \exists \leq MT \& \Box H \Box \sigma \Im \cap \equiv + |\Box \lor \epsilon TT.$

9. E&O.E $\nu\theta > \pm H \exists T$?

10. $^{\text{TM}}\langle \sigma \mathfrak{I} T \rangle \bullet T \langle \Box :: \theta T \Box \mathfrak{I} \cap \Xi + |\Box \vee \varepsilon T T.$

Section - B

II. Answer any two of the following

2 x 10 = 20M

 $11. | \downarrow | + \sim \mathsf{TM} \langle |\Box \ \Box \ \therefore \theta T \ \delta \Box \ \epsilon] + \equiv \nu H \Box \ \epsilon T^{\mathsf{TM}} \Psi \ Y''^{\mathsf{TM}} \Box \ \theta T \ \mathsf{TM} \langle \varphi \langle \sqrt{\sigma} \mathfrak{T} \ \# \rfloor \varphi \langle T + \& \Box \ .$

(μ)

 \bigcirc

 $\begin{array}{ccc} \nu\sigma\mathfrak{T}\Delta\Psi\;\theta T + \& \Box & \epsilon \equiv \subset \theta _ \therefore T'\;\sigma\mathfrak{T}\sqrt{.1,000}, \#\lfloor *' \# \Box \lor _ \therefore T' \therefore T \mid \Box \lor \delta \Box \mid \\ \downarrow \leq + \not \downarrow \not \downarrow \forall \Box \; \delta \longrightarrow H \Box \; \sigma\mathfrak{T}. \end{array}$

(δ—)

 $\begin{array}{c} \epsilon TT + < \Box \ T > \pm \ \# \big(*' + \equiv \theta \ \nu < \big(\Uparrow \ \sigma \Im \sqrt{.500} \ \epsilon TT + < \Box \ T \oplus \le \Box \ \rho \delta \Box \ T \downarrow = \Box \ \psi \big(\therefore' \\ \& \Box \ + \ \epsilon T \big] \equiv H \Box \ \sigma \Im T. \end{array}$

(&□)

$$\label{eq:constraint} \begin{split} \varsigma \Box ~~"] \lrcorner \downarrow \left(~~\# \ \downarrow *' + \equiv \theta ~ \nu < \ \downarrow \Uparrow ~ \sigma \Im ~ \sqrt{.5,000} ~ \angle \right] ~ Y''^{\mathsf{TM}} \Box ~ \oplus \leq \Box ~~\& \ \lfloor \ \land \# \ \bot \& \longrightarrow H \Box ~ \sigma \Im ~ H \Box ~ G \oplus ~ H \Box ~ \sigma \Im ~ H \Box ~ \sigma$$

 $(\Box) v \varepsilon T \Box \downarrow \pm \therefore |\Box \lor \delta \Box | \downarrow \leq + \sigma \Im \sqrt{.2,000} \mu \oplus \leq \Box \neg \varepsilon > \pm \oplus \leq \Lambda \& \Box H \Box \sigma \Im T.$ $(\mu |\Box \tau)$

(□)

 $\begin{array}{l} \vartheta^{\text{TM}}\square \ \therefore \text{T} \ \sigma \Im \sqrt{.8,900} \ \# \lfloor *' + \equiv, \ \vartheta^{\text{TM}}\square \ \therefore \ Y''^{\text{TM}}\square \ \oplus \leq \square \ \sigma \Im \sqrt{.9,800} > \pm \ \mid \psi \square \ \delta \\ --\text{H}\square \ \sigma \Im \text{T}. \end{array}$

12. Ξ ®K σ Ψ , $\downarrow \leq + \Box$ || \Box , $\downarrow \leq \varphi \langle T + | ^{TM} \Box \Box = \sigma \Im \sqrt{.50,000} \therefore \oplus \leq \Box \cong | - \varphi \langle T \rangle \wedge 1$, 2001 , $\downarrow = \Theta T > \wp \therefore T \# \downarrow \delta - \kappa \subseteq \emptyset | \Box = \Theta \Re \downarrow \prod \sigma \Im \sqrt{.1,000} \text{ K} \sigma \Im T \subset \# \downarrow \delta - + \sim. < \Box$ $\Box = \Theta \exists ^{TM} \langle \downarrow \pm \therefore + 10 \ \delta \Box = + \epsilon^{TM} \langle \diamond \sigma \Box : \therefore T \gg \# \# \langle H \Box = \psi \downarrow \varphi \langle T \Box = \& \Box = + \sim. \varphi \langle T + | ^{TM} \langle + \varphi]$ $\Box TT \downarrow \leq \neg \exists \therefore T\epsilon \ \sigma \Im \sqrt{.2,000}$, $| \Box \iff \delta \Box = + \epsilon^{TM} \langle \diamond \sigma \Im + \psi \Box \iff \beta \subseteq \sigma \Im + Y''^{TM} \Box \therefore T$ $\& \Box = \delta + \Box \ \sigma \Im T \ 31^{TM} \wp \ \epsilon TT > \bullet T \kappa \subseteq | \varphi \langle T \Box = ^{TM} \langle \therefore T \delta \Box = \sqrt{|} \delta - \varphi \sigma \Im \psi \Box \ \sigma TT < \Box$ $\begin{array}{c} \therefore \mid \Box < \Box \Uparrow \Leftarrow 5 \ \delta \Box + \epsilon^{TM} \langle \Diamond \sigma \Box \ \therefore \oplus \leq \Box \ \phi \langle T + \mid {}^{TM} \Box \ \theta T, \ \rangle'' \upsilon \ \Box \ \theta \chi \underline{\subseteq} \ldots \therefore \\ Y''^{TM} \Box \ \theta T \ \# \langle \sqrt{\mid} \Box \ + \& \Box \ . \end{array}$

13. σ }... \wp \Re .] T.] \leq $\land \diamond$ *] T $\varphi \supset$ $\& \odot$ $\forall \odot$ σ \Im $T \varphi \land \forall \lor$ T ψ] \Re T.] \leq $\land \diamond$ *] T $\varphi \supset$ $\& \odot$... $\downarrow \leq$ \Leftrightarrow \Box \Box ... $\downarrow \leq$ \Box ... $\downarrow \leq$ \Box ... $\downarrow \leq$ \Box ... $\downarrow \leq$ \Box ... $\downarrow =$ \downarrow ... \Box \Box \Box ... $\downarrow =$ \downarrow ... \Box \Box \Box ... \Box ... \Box \Box ... \Box \Box ... \Box ... \Box ... \Box \Box ... \Box

Section - C

III. Answer any two of the following

2 x 20 = 40M

$$\begin{split} \sigma \Im \psi \Box \Delta'' &\models 10 \ge \theta T \Box \therefore \delta \Box \sigma \Im T \oplus \le \Box \beta \subseteq \& \Box \epsilon > \pm, \epsilon T \sqrt{]} \mid ; \left(\epsilon \sqrt{\downarrow} \le +\Box \mid | \theta T + \& \Box \sigma \Im \sqrt{.6,000} \Re \downarrow' \sigma T T \psi \Box T \# \exists \Xi (\& \Box T. v + <\Box T \oplus \le \Box ; \left(\epsilon \sqrt{\downarrow} \le +\Box \mid | v + \bot \downarrow \le] + \Xi \theta \sim. \epsilon \sqrt{<} \left(\Box \psi \Box \mid \Box + | \Theta \psi \downarrow \Box + \ge T \rbrace \boxtimes \delta \Im \epsilon \sigma \Box \therefore T \mid \downarrow \left(+ \sim \exists < \int \Box + > \pm \epsilon \lor H \Box \Box \sigma T T. \end{split}$$

 $\begin{aligned} \epsilon T \sqrt{]} \mid \epsilon T] \phi \langle TT \epsilon \sqrt{<} \int \Box \psi \Box \mid \Box \sqrt{\delta} \Box \mid \downarrow \pm \therefore \rangle \not\subset \nu \epsilon \delta \Box \sigma \Im \psi \langle T \rightarrow \theta Y''^{TM} \Box \therefore \theta T \mid \psi \\ \Box \phi \langle TT \epsilon TT. \end{aligned}$

 $15. \ \sigma\Im\psi \Box T\omega\tau \ \varepsilonT] \varphi \langle TT \ \delta\Box \ T \neq \sigma\omega\tau \therefore T \ \Box \ \varepsilonT\Box \ \&\Box \ \psi\Box \leftrightarrow \beta \subseteq \sigma\Im\varepsilon TT\thetaT \ | \ \beta \subseteq \sigma\Im + (+=)" \upsilon \ (\Box \ \theta\chi \subseteq \ldots \ominus \thetaT \ 3 \Rightarrow 2 \ \Box \ \omega\Box \ \in \leftarrow | \ \varphi \ |\Box \ + \# \langle T \downarrow = + \{"\sigma\Im T. \ \sigma\Im\psi \Box T\omega\tau \}$

$$\begin{split} &\sigma\mathfrak{I}\sqrt{.7,500} \therefore \delta \square \ \sigma\mathfrak{I} \mathbb{T} \cong 0 \ \mathsf{T} \ \delta \square \ \sigma\mathfrak{I} \square \ \sigma \square \ \#] \delta \longrightarrow \sigma\mathfrak{I}\sqrt{.500} \ \mathsf{K}\sigma\mathfrak{I} \mathbb{T} \subset \therefore \ \mathsf{T} \ \# [\ast \\ '+ \equiv \mathsf{H} \square \ \& \square \ \mathsf{T}. \ \delta \square \ \mathsf{T} \neq \sigma \omega \ \mathsf{T} \ \sigma\mathfrak{I} \ \mathsf{U} \ \mathfrak{O} \ \mathfrak{O$$

@@@@

J.M.J.College for Women(A), Tenali - 522202

I Year B.Com (CBCS).,General II Semester

Paper -105 Principles of Management PPW :06 Hours

Unit-I: Introduction to Management

Management - Meaning - Significance - Management vs.Administration – Functions of management –Leadership – Leader vs. Manager - Fayol's Principles of Management.

Unit-II: Planning

Planning - meaning - significance –Steps in Panning - Decision making –Steps in decision making process.

Unit-III:Organization

Organizing - meaning - Principlesof organization- Line and Staff Organization -Organization chart.

Unit-IV: Delegation of authority

Delegation - meaning - elements - principles - difficulties in delegation – guidelines for making delegation effective - Centralization vs. Decentralization

Unit-V:Staffing, Controlling, Communication

Staffing – selection procedure –Coordination - Control – meaning – Qualities of Good Control - Communication Types - Barriers.

Reference Books

- 1. C.D.Balaji and G.Prasad, Business Organization and Management-Margham Publications.
- 2. R.K.Sharma&Shashi K Gupta, Business Organization&Management, Kalyani Publishers.
- 3. C.B.Gupta, Industrial Organization and Management, Sultan Chand.
- 4. Y.K.Bushan, Business organization and Management, Sultan Chand.
- 5. Sherlekar, Business Organization and Management, Himalaya Publications.

JMJ COLLEGE FOR WOMEN TENALI (AUTONOMOUS) I B.Com General Principles of Management

Semester II

Max.Marks:70

Section – A

I. Answer All of the following

Time:3Hrs.

10 x 1 = 10M

 $2 \times 10 = 20M$

- 1. $\Box \sigma \Im \cap \varsigma \Box "\Delta \nu \theta > \pm H \exists T?$
- 2. H $\phi \langle T \downarrow \leq^{TM} \langle \frown + \phi \mid T T \downarrow \leq_{\neg} \Re \sigma + \& \Box T : \downarrow \leq \Box \Delta'' : \Theta T \mid \psi \Box \phi \langle T + \& \Box$.
- $3. | \square \Delta'' [\downarrow \Upsilon \downarrow \leq \sigma \Im \Delta \phi (TT \downarrow \leq \neg \Re \sigma + \& \Box T \therefore \downarrow \leq \Box \Delta'' \therefore \theta T | \psi \Box \phi \langle T + \& \Box .$
- 4. $\downarrow \downarrow \mid \sim \downarrow \leq \sigma \Im \Delta \nu \theta > \pm H \exists T?$
- 5. $\nu \sim \int \exists \pm \sigma \Im \mid \Box < \int \Box \ \theta + \nu \theta > \pm H \exists T?$
- 6. $\exists \neq \downarrow \downarrow \mid \sim \downarrow \leq \sigma \Im \Delta \theta T \nu \theta > \pm H \exists T?$
- 7. $\varepsilon \leftrightarrow \varepsilon \delta \mathbb{O} \mathcal{A} \perp \leq \sigma \mathfrak{I} \Delta \nu \theta > \pm H \exists T?$
- 8. $\Box X'' \odot \cong \exists \leq^{TM} \langle \cap \varepsilon TT \nu \theta > \pm H \exists T? \rangle$
- 9. $\delta \square + \delta \square \varnothing < (\downarrow \leftrightarrow \phi \langle \psi : \theta T \Re \sigma + \& \square + \{ [\square | \psi \square \phi \langle T + \& \square .$
- $10. | \square \Delta''[\dashv \leq \theta T \square \sigma \Im \cap \equiv + \# \langle + \& \square .$

Section - B

II. Answer any two of the following

- $11. \varepsilon \leftrightarrow \varepsilon \delta @ \emptyset \downarrow \leq \sigma \Im \Delta \phi (TT \downarrow \leq \neg : \downarrow \leq \Box \Delta'' : T, ||\Box|| \downarrow \Upsilon \phi \langle T \exists \varepsilon] + \# \langle + \& \Box .$
- 12. $\Box \sigma \mathfrak{I} \cap \varsigma \Box "\Delta \exists < (\Box T :. > \bullet \sqrt{]} \subset \oplus \le \Lambda :. + \downarrow \le \omega \Box + > \pm | \psi \Box \phi \langle T + \& \Box .$
- $13. \exists \neq \downarrow + \mid \sim_{\downarrow} \leq \sigma \Im \Delta \square \epsilon \Xi \not \to \downarrow \leq^{TM} \langle \theta T T^{M} \mid * \mid -, < \Box \square \phi (TT_{\downarrow} \leq \neg \theta \chi \subseteq ... : \theta T \# \langle] \\ \subset + \# \langle + \& \Box .$

Section - C

- III.Answer any two of the following2 x 20 = 40M

 - $\begin{aligned} \text{15. } \epsilon \leftrightarrow \epsilon \delta @ \varnothing \downarrow \leq \sigma \Im \Delta \phi \big(TT \downarrow \leq \neg \therefore \downarrow \leq \Box \Delta'' \therefore \theta T, \epsilon T] \phi \langle TT \mid \Box \mid \downarrow \downarrow \big(\phi \langle T\theta T \exists \epsilon] + \# \langle + \& \Box \rangle. \end{aligned}$
 - $\begin{array}{c|c} 16. \Box \varsigma'' & \Box & \Box & \sigma \mathfrak{I} \frown \varsigma \Box & \sigma \mathfrak{I} \frown \Box & \sigma \mathfrak{I} \bullet \\ I \frown \Box & \sigma \mathfrak{I} \frown \Box & \sigma \mathfrak{I} \frown \Box & \sigma \mathfrak{I} \bullet \\ I \frown \Box & \sigma \mathfrak{I} \frown \Box & \sigma \mathfrak{I} \frown \Box & \sigma \mathfrak{I} \bullet \\ I \frown \Box & \sigma \mathfrak{I} \bullet & \sigma \mathfrak{I} \bullet \\ I \frown \Box & \sigma \mathfrak{I} \bullet & \sigma \mathfrak{I} \bullet \\ I \frown \Box & \sigma \mathfrak{I} \bullet & \sigma \mathfrak{I} \bullet \\ I \bullet & \sigma \mathfrak{I} \bullet & \sigma \mathfrak{I} \bullet \\ I \bullet & \sigma \mathfrak{I} \bullet & \sigma \mathfrak{I} \bullet \\ I \bullet & \sigma \mathfrak{I} \bullet \\ I \bullet & \sigma \mathfrak{I} \bullet & \sigma \mathfrak{I$

J.M.J.College for Women (A), Tenali – 522202

I Year B.Com (CBCS)., General II Semester

Paper-106	Business Economics- II	PPW:06 Hours
1 uper 100	Dusiness Leonomies II	

Unit-I: Production and Costs: Techniques of Maximization of output, Minimization of costs and Maximization of profit - Scale of production - Economies and Dis-economies of Scale - Costs of Production –Cobb-Douglas Production Function.

Unit-II: Market Structure-I: Concept of Market - Market structure - Characteristics - Perfect competition -characteristics equilibrium price - profit maximizing output in the short and long run Monopoly- characteristics - Profit maximizing out-put in the short and long run - Defects of Monopoly – Distinction between Perfect competition and Monopoly.

Unit-IIIMarket Structure-II: Monopolistic Competition - Characteristics - Product differentiation - Profit maximization- Price and output in the short and long - run – Oligopoly - characteristics - Price rigidity - Kinked Demand Curve - Distribution - Concepts - Marginal Productivity - Theory of Distribution.

Unit-IVNational Income And Economic Systems: National Income - Definition Measurement - GDP - Meaning Fiscal deficit - Economic systems - Socialism - Mixed Economic System - Free Market economy.

Unit-V Structural Reforms: Concepts of Economic liberalization, Privatization, Globalization - WTO Objectives Agreements - Functions - Trade cycles - Meaning - Phases - Benefits of International Trade - Balance of Trade and Balance of payments.

Reference Books:

- 1. Aryasri and Murthy, Business Economics, Tata McGraw Hill
- 2. H.L Ahuja, Business Economics, Sultan Chand& Sons
- 3. KPM Sundaram, Micro Economics
- 4. Mankiw, Principles of Economics, Cengage Publications
- 5. Mithani, Fundamentals of Business Economics, Himalaya Publishing House

6. DAR Subrahmanyam &V Hari Leela, A Text Book on Business Economics, Maruthi Publishers.

7. A.V. R. Chary, Business Economics, Kalyani Publishers, Hyderabad.

J.M.J.COLLEGE FOR WOMEN, TENALI::(Autonomous) Advanced Accounting – II B.Com General& Computers III SemesterSyllabus

Max.Marks:70M

Objectives:

1.To appraise the students about the application of accounting knowledge in special business activities.

2. To impart the skills of preparation of final accounts of non-trading concerns, partnership, organizations.

UNIT – I: Accounts from Incomplete Records

Single Entry: Features – books and accounts maintained -Recording of transactions-Ascertainmentof Profit. – (Statement of Affairs method only).

UNIT – II:Hire purchase and installment purchase system

Hire Purchase System - Features –Accounting Treatment in the Books of Hire Purchaser and Hire Vendor - Default and Repossession - Installment Purchase System - Difference between Hire purchase and Installment purchase systems - Accounting Treatment in the books of Purchaser andVendor.

UNIT - III: Accounting of Non-Profit Organizations

Non-Profit entities – Features of nonprofit entities – Accounting process Preparation of summaries Receipts and Payments Account meaning and special features – Procedure for preparation – uses and limitations.

Income and Expenditure Account-features procedure for preparation – preparation of Balance Sheet.

UNIT- IV: Partnership Accounts I

Legal provisions in the absence of Partnership Deed Fixed and Fluctuating Capitals –Preparation of final accounts. Accounting Treatment of Goodwill and Admission of a partner.

Accounting treatment of Retirement and Death of a Partner Dissolution of Firm (Excluding Sale to Firm, Company and Amalgamation) – Recording of partnership transaction and preparation of final accounts using computers.

Books Recommended:

- 1. Advanced Accounting-R.L.Gupta, M.Radhaswamy ,Sultan Chand & Sons, 12th Edition-1998
- 2. Financial Accounting- Dr.SakshiVasudeva, Himalaya Publishers-2008
- 3. Financial Accounting- S.P.Jain, K.L.Narang, Kalyani Publications -2009
- 4. Financial Accounting K.V.Kumar, K.S.R.K.Prasad, Jai Bharat 2009

Unit wise Weightage	1Marks	10Marks	20Marks
	Theory	Problems	Problems
Unit I – Single Entry System	2	1	-
Unit II – Hire purchase &	2	1	-
Installment System			
Unit III – Non-Profit	3	-	1
Organizations			

Unit IV – Partnership Accounts I	3	1	2
Admission or Retirement and			
Dissolution			
Total	10	3	3

J.M.J.COLLEGE FOR WOMEN, TENALI::(Autonomous) Advanced Accounting – IIB.Com General, III Semester Model Question Paper

Max.Marks:70M

Time:3Hrs.

	Section – A	
I.	Answer all of the following.	10 x 1 = 10M
1.		
	$\Box + \{ \left(\Box < \Box T \right) \exists < \int \Box \theta \varepsilon TT \phi \forall TT \Box \leq \neg \Re \sigma + \& \Box $	$T :: \downarrow \leq \Box \Delta'' :: T \mid \psi \Box \phi \langle TT \varepsilon TT?$
2.	Differences between Balance Sheet and Statement of affairs?	
	$\Box \ \delta \longrightarrow \ v \Box \ \Box \ \therefore \ \Box \ \{\Upsilon \ . \ . , \ \varepsilon \not \leftarrow \varepsilon \varsigma \Box \ "\sigma \Im \ \psi \ - \downarrow \leq \oplus \varsigma \Box \ . \ . \ . \ . \ . \ . \ . \ . \ . \$	$\leq \square > \bullet \therefore TM \ \& \square \ \therefore T \ \ \psi \square \ \phi \langle T $
	ΤεΤΤ?	
3.	What are the differences between hire purchase method and ir	nstallment method?
	$\nu < \downarrow \uparrow \downarrow = \theta T > \wp \therefore T \mid \Box < \Box \uparrow \Leftarrow \downarrow \uparrow, \psi \Box \sigma T T < \Box \therefore \mid$	□ <□ î(⇐↓∫ >•∴ ℜσ+&□ Τ ™
	&□ ∴ T ψ □ ϕ (TTεTT?	
4.	Define partnership?	
	υ (">•κ⊆∩εΤ↔εΤΤθΤ □ σℑ∩≡+ □ νεΤΤ?	
5.	What is goodwill?	
	$> \bullet T \& \Box \exists \land v \theta > \pm H \exists T?$	
6.	What is fixed capital and fluctuating capital?	
	δ—ØσℑεT $√$ < $∫$ □ θεTT, □ δ—ØσℑεTT< $∫$ □	$ \theta = \langle \hat{T} \rangle + \frac{1}{2} \theta = \langle \hat{T} \rangle + \frac{1}{2} \theta \theta = \langle \theta \theta \theta \theta \theta \theta \theta \theta \theta $
	\Box ?	
7.	What is non-trading organization accounts?	
	$\psi \Box \leftrightarrow \beta \sqsubseteq \neq \sigma^{TM} \langle \sigma \mathfrak{I} \ \delta \Box \ + \delta \Box \ \varnothing \therefore \ K^{TM} \Box \ \therefore T \ \nu \theta {>} \pm H$	H_∃∃T?
8.	What is donations and subscriptions?	
	$\exists \sigma \Box \Rightarrow " \therefore T \# \langle + < \Box : \therefore T \nu \theta > \pm H \rfloor \exists T?$	
9.	What is partnership deed?	
	$\upsilon \big(">\bullet \kappa \subseteq \cap \varepsilon T \leftrightarrow \Box \mid \Box \in + < \Box \varepsilon TT \nu \theta > \pm H \exists T?$	
10.	. Write any two differences between receipts and payments a/c	and income and expenditure a/c.

$$\begin{split} & \varepsilon \delta \Box \ \sqrt{\therefore} T \ \# \lfloor *' + |\Box \ \vee \therefore \ K^{TM} \Box \ \oplus \leq \Box \ , \Box \ < \Box \ \phi \langle T \ \varepsilon \leftrightarrow \phi \langle T \ \therefore \ K^{TM} \Box \ \sigma \Im T > \bullet \therefore \cong \Re \sigma + \& \\ & \Box \ T \ ^{TM} \bot \& \Box \ \therefore T \exists \varepsilon] + \# \langle + \& \Box \ ? \end{split}$$

Section - B

II. Answer any Two of the following

2 x 10 = 20M

11. Reddy keeps his books by single entry system. On 01-04-2005 his financial position was as follows:

	Rs.		Rs.		
Cash in hand	1,250	Cash at bank	2,000		
Stock in trade	7,500	Fixtures	350		
Sundry debtors	9,800	Plant	15,100		
Sundry creditors	9,000	Drawings	5,900		
On 21 02 2005 his financial position was as follows:					

On 31-03-2005 his financial position was as follows:

	Rs.		Rs.
Sundry Creditors	7,500	Plant	18,100
Fixtures	320	Debtors	13,300
Stocks in trade	14,000	Cash in hand	1,150
Bank overdraft	3,600		

You are required to prepare a statement of profit or loss and closing statement of affairs.

 $\sigma \Box < \int \Box \ \mathsf{TM} \langle \theta | \Box \ \sqrt{\delta} \Box \ | \downarrow \pm \therefore \theta \mathsf{T} \Box + \{ \int | \Box \ < \Box \ \mathsf{T} \uparrow \exists < \int \Box \ \theta + \} \not \subset \sigma \mathfrak{I} \cap \varsigma - \mathcal{T} \delta \Box \ \mathsf{T} \mid + \sim \}$ $1 \ \overline{4} \ \overline{2}0040 \ \cup \ \psi \ T \ \cup \] \varnothing \downarrow \leq | \Box \] \& - \varnothing \Leftarrow | \downarrow \downarrow \ (+ \sim \exists < \int \Box \ + > \pm \Box \ + \sim.$ $\# \downarrow \Leftarrow \ \ \forall \not d \models \bullet < \Box \ \ T \quad 1250 \qquad \qquad \ \upsilon'' \leftrightarrow + \oplus \leq \Box \ \ \ \ \forall \not d \models \bullet < \Box \ \ T$ 2000 $\varepsilon \sigma \mathfrak{I} | \theta | \Box \vee \Box \therefore \cap 7500 \qquad | \Box \longrightarrow \Box \leq \subset \mathfrak{T}'$ 350 β⊆′+≥T $\sigma \Im T\Delta > \bullet \delta \Box T : \Box 9800$ 15100 $\sigma \Im T \Delta < \Box T M \langle :: T 9000$ $\kappa J + T \langle \psi \Box \& \Box \downarrow \pm :: T \rangle$ 5900 31 $\overline{3}$ $\overline{2}005$ H $\left\{ \left(\Box \right) \otimes \downarrow \leq \Box \right\} \otimes = \otimes \left(\Box \right) = \left(\Box + 2 \right) = 0$ $\sigma \Im T \Delta < \Box TM \langle :: T 7500$ β⊂′+≥T 18100 $\sigma \Im T A \ge \delta \Box T \sqcup :: T$ $\square \longrightarrow \leq \sigma \mathfrak{I}'$ 320 13300 $\# \models \forall \sigma \theta > \bullet < \Box T$ $\varepsilon\sigma\mathfrak{J}|\theta| \Box \lor \Box :. \cap 14000$ 1150 $\upsilon'' \leftrightarrow + \oplus \leq \Box \geq \varepsilon \sigma \Psi \mid \& \Box \mid \Box ... 3600$ $"\upsilon \square \theta \omega \square \ldots \square \psi \dashv \prec , \varepsilon \leftrightarrow \varepsilon \varsigma \square "\sigma \square \therefore \square \psi \dashv \prec \dashv \leq \mathsf{TM} \langle \varphi \langle \sqrt{\sigma \mathfrak{T}} T \# \rfloor \varphi \langle TT \varepsilon TT.$

12. M/s A and B purchased on 1st Jan 2003 from X and Co. a machine whose cash price was Rs.7450. Payment was to be made in four installments of Rs.2,000 each the first payment to be made immediately and the other three at the end of 2003, 2004, 2005. Interest as taken to be 5% p.a. depreciation is 10% p.a. on the diminishing value. Give the Ledger A/c in the books of A & B on Hire Purchase System.

 $\begin{array}{c} \cup \theta \epsilon] \ 1 \ \overline{2}003 \ \theta \ \downarrow \leq + \Box \ \delta \Box \ \psi \Box \ \sigma \mathfrak{T} \ v < \left(\Uparrow \downarrow = \theta T > \wp \ \therefore T \ |\Box \ < \Box \ \Uparrow \leftarrow \right) \not \subset \varphi \langle \mathfrak{I} \underline{\ast} | \\ ^{TM} \Box \ \Box \ v + \& \Box \ \downarrow \wp \ \theta T + \& \Box \ \downarrow = \theta T > = \therefore T \ \# \lrcorner \kappa \underline{\subset} \sigma \mathfrak{T} . \theta > \bullet < \Box \ T < \int \Box \ \sigma \mathfrak{T} \ \sigma \mathfrak{T} \sqrt{.7,45}$

13. Sarma and Sastry are running a partnership business on the following terms.

- i. They are to share profits and losses in the ratio of 2:3.
- ii. Interest on capital is to be allowed at 5% per annum.
- iii. Interest on drawings is t be charged at 6% for the whole year.
- iv. Sarma who is also acting as a manager of the firm, is to get a commission of 3% on profits after charging such commission.

Partnership business resulted in a profit of Rs.55,600 before adjusting partner's transactions. Capital balance of partners are Rs.50,000 and Rs.40,000, respectively. Their drawing amounted to Rs.5,000 and Rs.8,000 respectively. You are required to prepare profit and loss appropriation account for the year ended 31st December, 2002 and Partners capital accounts, when

- i. Capitals are fixed and
- ii. Capitals are fluctuating.

1. $\forall "\upsilon \mid \Box = \theta \chi \subseteq \ldots : \Theta T 2 \ni 3 \Box = \omega \Box \in \Leftarrow \mid \forall \not \sqsubset \mid \Box = \# \langle T_{\rightarrow} \lor \psi \Box \ast .$

- 2. $\epsilon T \sqrt{..} < \int \Theta \oplus |\Pi \epsilon \& \Box f 5\% \psi \Box] \downarrow \leq \neq \sigma \geq T \Box |\Pi \rangle \downarrow = \# \Box *.$
- 3. $\kappa \downarrow + \mathsf{TM} \langle \psi \Box \& \Box \downarrow \pm \therefore \Box \mid \Pi \& \& \Box f 6\% \psi \Box] \downarrow \leq \neq \sigma \geq T \Box \mid \Pi \rangle \supset \downarrow (\neg + \# \Box *.$
- 4. $\Xi \supset \sigma \mathfrak{I} \oplus \leq \Box \quad \delta \Box + \epsilon^{\mathrm{TM}} \langle \Diamond \sigma \Box \Box \downarrow [\Im^{\mathrm{TM}} \langle + \sigma \mathfrak{I} \sqrt{.5000}.$
- 5. $\delta \square + \delta \square \varnothing \psi \bot TH \lrcorner \cup \sigma \Im T > \pm \epsilon \leftrightarrow \epsilon \varsigma \square "] \delta \square T | \theta \square \Xi | \delta \square \downarrow \downarrow [v \ge T\epsilon + { [\downarrow \le \exists T\omega$

Section - C

III. Answer any Two of the following

2 x 20 = 40M

14. The following are the Receipts and Payments account of Warangal Cricket Club for the year ending 31st December,2006

	Rs.		Rs.
To Opening Balance		By Establishment expenses	
Cash	400	(Rs.1,400 for 2006)	16,000
Bank balance	20400	By Telephone charges	600
To Subscriptions (including Rs.750		By Purchase of Books for library	14,200
for 2006)	24,400	By Rent	5,000
To Rent for Hall	1,600	By Travelling	200
To interest on investments	1,000	By Stamps, Stationary	800
To Donations	12,500	By Closing balances:	
		Cash	300
		Bank balance	22,600
	60,300		60,300

The following additional information is provided.

- i. On 01-01-2005, the club held Government Securities fetching 6% interest for Rs.40,000
- ii. The values of books in library was Rs.25,000 on 01-01-2005.
- iii. Hall rent is still receivable for Rs.400 and office rent outstanding is Rs.1,000 on 01-01-2005 Rs.250; On 31-12-2005 Rs.400
- iv. Prepare Income and Expenditure account and the balance sheet relating to the year.

$$\begin{split} &\varepsilon\sigma\mathfrak{J}+>\bullet \big \} \land \big | \downarrow \big | \neq \downarrow \big \{ \land \downarrow \leq' \Box \ T \circledast \psi \Box \ \big] \ 31 \ \& \Box \ \Box \ \delta + \Box \ \sigma\mathfrak{J}T \ 2005 \ {}^{\mathsf{TM}} \wp \ \nu + {}^{\mathsf{TM}} \langle \varepsilon T \varphi \big] T \\ &\leftrightarrow \delta \Box \ + \varepsilon^{\mathsf{TM}} \langle \Diamond \sigma \Box \ \Box \ \downarrow \big | \ \varepsilon \delta \Box \ \sqrt{\Longrightarrow} \big] \ \Downarrow \ \# \big | \ast' + \big | \Box \ \vee . \Box Y'' {}^{\mathsf{TM}} \bullet T \varepsilon \ \Box \ \varepsilon \cap \Box \ \& \Box \ +\sim. \end{split}$$

Dr.

 $\epsilon\delta \Box \hspace{0.1cm} \sqrt{\Longrightarrow} J \Box \hspace{0.1cm} \Downarrow \hspace{0.1cm} \# \lfloor *' + \mid \Box \hspace{0.1cm} \vee \therefore \hspace{0.1cm} Y''{}^{TM} \Box$

Cr.

εδ□ √⇒/□ ↓	σℑ√.	# *′ + □ ∨∴T	σЗ√.
$T_{0} \beta \subseteq \sigma \mathfrak{I} + \upsilon \cap \Box \square \square \square$		Ву	
$\theta > \bullet < \Box T$	400	μχ⊆′ωτ ψ\Τ+≥Τ Κσ	16,60
υ″↔+⊕≤□	20,40	ℑT⊂∴T	0
To $\# \langle + \langle \Box \rangle$ \therefore T(2006 $\downarrow f \# \downarrow + \langle \theta \sigma \rangle$	v	(2006.⊣∫ #\ε~θ σℑ√.1,4	600
ℑ√.750™ ℘δ□ ς□ ″)	24,40	00 ∴™ ℘ δ□ ς□ ″)	14,20
To $\varsigma \square$ ": T $\nu < \downarrow \uparrow$	0	Ву	0
Το □ ≥Τ□ &□ Τ∴Τ □ ∏ ε&□	1,600	¢⊃*β□ JH□ KσℑT⊂∴T	5,000
To $\exists \sigma \Box \Rightarrow " \therefore T$	1,000	Ву	200

12,50	$ \Box \lor \delta \Box \downarrow \pm \pm \downarrow \wp \theta T > \wp $	800
0	:.T	
	By $\nu < \uparrow \uparrow$	300
	$ By \Box \phi\langle\sqrt{\Delta} K\sigma \Im T \subset \therefore T$	22,60
	Ву	0
	$\kappa \subseteq+ \square \lor \therefore T, \square \deltaω$	
	-]]	
60,30	By $\varepsilon TT \angle + \Box \lor \Box : \cap : T$	60,30
0	θ>•<□ T	0
	υ″↔+⊕≤□	

 $\sim > \bullet T \epsilon \lor < \Box \hspace{0.1cm} \theta | \Box \lor \hspace{0.1cm} \overline{\delta \Box \hspace{0.1cm}} \epsilon \sqrt{\# \Box \hspace{0.1cm}} \sigma \mathfrak{I} + \Box \hspace{0.1cm} \epsilon \cap \Box \hspace{0.1cm} \& \Box \hspace{0.1cm} \theta \sim .$

- 1. 1 $\overline{1}$ $\overline{2}005 \ \theta \downarrow \leq' \upsilon \land \varepsilon < \Box \ \uparrow \sigma \Im \checkmark 40,000 \ \exists \therefore T\varepsilon \# \Box \ \delta \ 6\% \ \varepsilon \& \Box \ f \ \delta \Box \ +\beta \ \subseteq \sim + \# \Box \ | \Box \ \upsilon \ \cap \Box \ T^{TM} \land \Box \ \delta \oplus \leq \Lambda \leftrightarrow] \{\Upsilon \therefore T \Box \ H\Box \ \Box \ \sigma TT.$
- 2. 1 $\overline{1}$ $\overline{2}005 \theta$ $\exists \Pi \Box \downarrow \Box \lor \delta \Box \downarrow \bot \vdots \exists \therefore \exists \sigma \Im \sqrt{.25,000}.$
- 3. $\varsigma \square \land T \lor \langle \uparrow \square + \downarrow \leq \Theta T \sigma \square \varepsilon \land \delta \rightarrow \Theta \Im \sqrt{.400} \# \langle \ast' + \# \langle \varepsilon \land \delta \longrightarrow \Theta \lor \langle \uparrow \square \sigma \Im \sqrt{.1000}.$
- 4. $\kappa \subseteq ... + |\Box \lor \therefore T, \Box \delta ... \omega \Box \theta] \Box \therefore \cap \therefore T.$

15. A and B partner's in a business share profits and losses in the ratio of 3:1. Their Balance Sheet as on 31-12-2005 was as under:

		Rs.		Rs.
Creditors		37,500	Bank	22,500
General R	eserve	4,000	Bills receivable	3,000
Capitals:			Debtors	16,000
А	30,000		Stock	20,000
В	16,000	46,000	Furniture	1,000
			Buildings	25,000
		87,500		87,500

On 01-01-2006 they admit C on the following terms:

- a. That C pays Rs.10,000 as his capital for 1/5 share of profits
- b. That goodwill account be raised to Rs.20,000
- c. That stock and furniture be reduced by 10% and provision of 5% be made for doubtful debts.

- d. That the value of buildings be appreciated by 20%
- e. That the capital accounts of all the partners be readjusted on the basis of their profit sharing arrangements and any additional amount to be credited to their current accounts.

Prepare Revaluation account and capital accounts and the opening Balance Sheet of the firm.

 $\begin{array}{c} \Box \downarrow \leq \psi \Box \leftrightarrow \beta \subseteq \sigma \mathfrak{T} + \not \models \forall \forall \mathsf{U} \mid \forall \flat \delta \Box \mid \Box \mid \Box \mid \mathsf{T} \succ \Box \mid \mathsf{AET} \rbrack \varphi \langle \mathsf{TT} \mid \mathsf{B} \mid \Box \mid \mathsf{T} \mid \forall \mathsf{U} \mid \forall \vartheta \chi \subseteq \\ \Box \sqcup \exists \mathfrak{T} \mid \mathsf{T} \exists \mathfrak{T} \mid \Box \mid \mathsf{T} \mid \mathsf{T}$

$\nu \square \square \therefore T$	σ ℑ√.	$\Box \delta \Box T :: T$	σℑ√.
$\sigma \mathfrak{I} \Delta < \square T A \land \square$	· · · ·		22,500
κ⊆<∫□ σℑΔ]∪σℑΤ	4,000	$\epsilon \delta \Box \ \checkmark :: T _:: T' ::$	3,000
\cap		Т	16,000
$\epsilon T < \int \Box H \Box T$	30,000	$\sigma \Im T\Delta > \delta \Box T :.$	20,000
А	16,000	Т	1,000
В		δ□ σℑΤ⊕≤□	25,000
		□ □]□ # {{ 5	
	-	υ∫□ εH□ ∴T	
	87,500		87,500

- 1. $15\epsilon + TM \langle T \psi \Box \{ " \oplus \leq \Box \ \sigma \Im \sqrt{.10,000} \ \epsilon TT : < \int \Box \ \theta + TM \rfloor \psi \Box *.$
- 2. $\sigma \Im \sqrt{.20,000} \therefore \theta T > \bullet T \& \Box \exists \land Y''^{TM} \Box \delta \Box \Box \omega \dots + \# \Box *.$
- $\begin{array}{l} 3. \hspace{0.1cm} \delta \Box \hspace{0.1cm} \sigma \Im T \oplus \leq \Box \hspace{0.1cm} , |\Box \hspace{0.1cm} \Box \hspace{0.1cm} \downarrow \Box \hspace{0.1cm} \# \langle \sigma \Psi \Box \hspace{0.1cm} | \prod \hspace{0.1cm} 10\% \hspace{0.1cm} {}^{\texttt{TM}} \langle \angle \mathbb{Z} \hspace{0.1cm} + \hspace{-0.1cm} \# \Box \hspace{0.1cm} \bigcup \hspace{0.1cm} \upsilon'' \hspace{0.1cm} \bot \Upsilon \therefore \hspace{0.1cm} \Box \hspace{0.1cm} \sim \hspace{0.1cm} \int 5\% \hspace{0.1cm} \Xi \sigma \Box \hspace{0.1cm} \in \geq T \hspace{0.1cm} \# \rfloor \varphi \langle \sqrt{*}. \end{array}$
- 4. $\upsilon \upharpoonright \to \delta \square T \upharpoonright \to + < \square \exists \varepsilon T \lor \to < \cap H \square \to \theta T \psi \square \exists \varepsilon T \lor \circ \Box \Box \varphi \subseteq ... \land \square \omega \square \varepsilon \Leftarrow$ $| | \square \sqcup \pm \sigma \Im + \delta \square \sigma \Im T \Cap \upsilon'' \therefore T \# \exists \delta _ \lor < \square \theta + > \pm \square \theta \square \psi \lor T T^{TM} \square \vdots \theta T \psi \square$ $| \bot \leq \Re \sigma + \geq T Y''^{TM} \square \therefore \oplus \leq \square \varepsilon T [\Downarrow + \# \square *.$

Sri Ram, Jai Ram, Sita Ram are partners in a business, sharing profits and losses in the ratio 3:2:1.
Their Balance sheet as on 30th June, 2002 was as follows,

Liabilities	Rs.	Assets	Rs.
Sundry Creditors	2,200	Cash in hand	1,200

Reserve	12,000	Cash at Bank	2,000
Capitals:		Sundry debtors	18,000
Sri Ram	20,000	Stock in hand	14,000
Jai Ram	20,000	Machinery	12,000
Sita Ram	20,000	Factory Building	28,000
	75,200		75,200

On that date Sita Ram retires from Business. It is agreed to adjust the value of assets as follows:

a. To make a provision of 5% on Sundry Debtors for doubtful debts.

b. To depreciate stock by 5% and machinery by 10%

c. Factory building to be revalued at Rs.30,200.

Show the revaluation account and the partner's capital accounts and prepare the Balance Sheet of the continuing partner's as on July 1st, 2002.

$\nu \square \square \therefore T$	σЗ√.	$\Box \ \delta \Box \ T \therefore T$	σℑ√.
$\sigma \mathfrak{I} \Delta < \square T A \langle :: T$	3,200	#_]⇐ }⊄ θ>●<□ T	1,200
]∪σℑΤ∩□ ~∫	12,000	$\upsilon'' \leftrightarrow + \oplus \leq \Box \not \subset \theta$	2,000
$\epsilon T < \int \Box H \Box$		>●<□ T	18,000
Т	30,000	$\sigma \Im T\Delta > \delta \Box T$	14,000
οσ□ ψ□ Τ	16,000	∴T	12,000
Χ⊃∏σ□ ψ□ Τ	20,000	#_]⇐}⊄ к⊆…⊕≤	28,000
$\delta \mathbb{C}^{\text{TM}} \square \ \sigma \square \ \psi \square \ T$			
		$\phi \langle T+ TM \Box :: T$	
	75,200	β□ ⊆₊⊐≤…↓∴Τ	75,200
		υ∫□ εθ+	

30 $\overline{6}$ $\overline{2}002$ H \square { $\left[\Box \delta _ \right] \nu |\Box \Box \therefore |\Box$ { $\left[\ldots \right]$

- $\begin{aligned} 1. \quad \delta\Box +\Xi \int \varphi \langle \sqrt{TM} \langle \Box \downarrow \leq \upsilon'' \downarrow \Upsilon \therefore \Re \downarrow \prod \exists \exists < \left(\Box \sigma \Im T\Delta \right) > \bullet \delta\Box T \right| \therefore \Box \mid \prod 5\% \cong \sigma \\ \Box \in \geq T \# \lfloor \varphi \langle \sqrt{\leftrightarrow} \ast. \end{aligned}$
- $2. \hspace{0.2cm} \kappa \underline{\quad} \ldots \oplus \underline{\leq} \Box \hspace{0.2cm} 5\% \varphi \langle T + \mid {}^{TM} \Box \hspace{0.2cm} \therefore T \hspace{0.2cm} 10\% \hspace{0.2cm} {}^{TM} \langle \sigma \mathfrak{I} T {>} \bullet T {<} \Box \hspace{0.2cm} \therefore \cong \sigma \Box \hspace{0.2cm} \in \underline{\geq} T \hspace{0.2cm} \# \lrcorner \varphi \langle \sqrt{*}.$

3. $\beta \square \subseteq \leftrightarrow \downarrow \leq \ldots \downarrow \cup \cap \exists \in H \square \square = \sigma \Im \sqrt{.30,200} > \pm \varepsilon \lor \theta \sigma \Im \sqrt{\square}$ $\uparrow'' \leftrightarrow + \downarrow \leq \theta \# \downarrow \varphi \land \psi \leftrightarrow *$. $|\square \lor \theta \sigma \Im \sqrt{\square}$ $\uparrow'' \leftrightarrow + \downarrow \leq \theta Y''^{TM} \square \cup \cap'' > \bullet |\square \lor | \therefore \varepsilon T \checkmark \therefore < \cap H \square \therefore Y''^{TM} \square \therefore T$ $\pi \uparrow \supset \Pi 1, 2002 H \square$ $\{ \cap \psi \square \leftrightarrow \beta \subseteq \sigma \Im + \} \not \subset \downarrow = \theta \ltimes \subseteq > \bullet T^{TM} \land T \theta \square \cup \cap'' > \bullet \delta \square T$ $| \therefore T \square \delta = \emptyset \lor |\square \square \therefore |\square$ $\{ \cap \ldots \top^{TM} \langle \varphi \langle \sqrt{\sigma} \Im T \# \rfloor \varphi \langle TT \varepsilon TT.$

J.M.J.COLLEGE FOR WOMEN, TENALI::(Autonomous) Advanced Accounting – II B.Com General& Computers IV SemesterSyllabus

Max.Marks:70M

Objectives:

To develop the skills of recording of transactions relating to issue of shares and debentures, branches and departments manually and using computers.

UNIT I : Branch Accounts:

Dependent Branches: features –Books of accounts – methods of accounting of dependent branches –Debtors System, Stock and debtors system –Recording of transaction relating to branch accounts using computers.

UNIT 2: Departmental Accounts:

Departmental Accounts: need, features, Basis for Allocation of Expenses, treatment of Inter Departmental Transfer at cost or Selling Price Treatment of Expenses that cannot be allocated – Preparation of departmental profit and loss

UNIT 3: Company Accounts: Shares

Issue of Shares at par, Premium and at Discount Forfeiture and Reissue of Shares Rights issue (Theory Only) Recording of transactions relating to issue of shares using computers.

UNIT 4: Company Accounts: Debentures

Issue and Redemption of Debentures- Redemption out of profits –sinking fund method. Recording of transaction relating to issue and redemption of debentures using computers Underwriting of Issue of Shares(Simple Problems)

Books Recommended:

- 1. Advanced Accounting-R.L.Gupta, M.Radhaswamy ,Sultha Chand & Sons, 12th Edition-1998
- 2. Financial Accounting- Dr.SakshiVasudeva, Himalaya Publishers-2008
- 3. Financial Accounting- S.P.Jain, K.L.Narang, Kalyani Publications -2009
- 4. Financial Accounting K.V.Kumar, K.S.R.K.Prasad, Jai Bharat 2009

Unit wise Weightage	1Marks Theory	10Marks Problems	20Marks Problems
Unit I – Branch Accounts	2	1	1
Unit II – Departmental Accounts	2	1	-
Unit III – Company Accounts:	3	-	1
Shares			

Unit IV – Company Accounts:	3	1	1
Debentures			
Total	10	3	3

J.M.J.COLLEGE FOR WOMEN, TENALI::(Autonomous) Advanced Accounting – IIB.Com General, IV Semester Model Question Paper

Time:3Hrs.

Max.Marks:70M

Section – A

I.	Answer all of the following. 10 x 1 = 10M	
1.	. What are preference shares and equity shares?	
	$ v \sim \int I \leq I \leq I = $	T?
2.	. What is forfeiture?	
	$\Psi \square \{ " : \cup \square \lor \lor \theta > \pm H \exists T ?$	
3.	. What is debenture?	
	&□ υ⊃+# $(\sigma$ ℑT νθ>± H \exists T?	
4.	. How the allocation of costs to different departments?	
	$\exists < f \square \sigma \mathfrak{I}_{+} \pm \vdots \epsilon \leftrightarrow \varphi \langle \sqrt{\ldots} \theta T \; \exists \exists < f \square \upsilon'' > \pm \ldots \oplus \leq \Box \cong \exists < f \square +> \pm \neq_{+} \downarrow \{ \forall \forall$	[″σΤΤκ⊆
	σℑΤ?	
5.	. What is bad debts and bad debts reserve?	
	$\sigma\Box \Box \upsilon'' \dashv \Upsilon \therefore T \varepsilon T] \varphi \langle TT \sigma\Box \Box \upsilon'' \dashv \Upsilon \therefore \Box \sim \int \nu \theta > \pm H \exists T?$	
6.	. What are the types of capital?	
	$\epsilon T < \int \Box \ \theta \ \sigma \Im_{+} \pm T \ TM \ \downarrow T \in \epsilon T T?$	
7.	. What is meant by independent branches?	
	$\delta \Box \cap^{\mathrm{TM}} \langle + \mid {}^{\mathrm{TM}} \langle \mid \upsilon'' + \mathrm{N} : T \nu \theta \rangle \pm \mathrm{H} \exists \mathrm{T}?$	
8.	. What is meant by issue of shares by premium?	
	$ \odot \exists T \varphi \langle T \varepsilon T T \therefore TM \wp \ \psi \Box \ \{ " \ X" \checkmark \nu \theta > \pm H \rfloor \exists T ?$	
9.	. What is Par value?	

$\Psi \square \{ " \ \delta \square \ \epsilon T \epsilon T \sqrt{..} \leftrightarrow \epsilon T T \ \nu \theta > \pm H \ \exists T ? \}$

10. What is meant by stock debtors system?

 $\delta \Box \sigma \mathfrak{T} \oplus \leq \Box \Box TT \Delta | > \bullet \delta \Box T | \therefore |\Box < \Box \Uparrow * \nu \theta > \pm H \exists T?$

Section – B

II. Answer any Two of the following.

2 x 10 = 20M

- 11. A Company issues 1000 debentures of Rs.1000each pass the necessary entries for the issue of Debentures in each of the following cases:
 - a. Debentures issued at Rs.950 repayable at Rs.1000
 - b. Debentures issued at Rs.950 repayable at Rs.1050
 - c. Debentures issued at Rs.1000 repayable at Rs.1050 and
 - d. Debentures issued at Rs.1050 repayable at Rs.1000 you may assume that all the amounts due on the issue of debentures have been received.

 $X'' \downarrow \#] \delta - \theta \& \Box \ \upsilon \supset + \# \langle \sigma \mathfrak{I}' \Box \ | \prod \sigma \Box \ \epsilon \therefore \delta - \theta \ \psi \lfloor TT^{\mathsf{TM}} \langle \mid + \epsilon \equiv \subset + < \Box \ \Box \ \upsilon \ \int'' \exists + \# \langle + \& \Box \ .$

	Rs.	Rs.
Stock at Branch on 01-04-2000		30,800
Debtors at Branch on 01-04-2000		16,500
Cash at Branch on 01-04-2000		500
Goods supplied to Branch		1,51,200
Remittances by Branch		
Cash sales	10,500	
Cash received from debtors	1,57,740	
		1,68,240

Cash sent to the Branch					
Salaries	7,400				
Rent	2,400				
Petty cash	3,000				
	12,840				
Stock at Branch on 01-04-2000	23,150				
Debtors at Branch on 01-04-2000	50,450				
Cash at Branch on 01-04-2000	750				
Show Branch A/C in the Books of H.O.					
$H \Box \ \varphi \langle TT \& \Box \ T \ \ \Box \ < \Box \ \sigma \forall \psi \diamond \oplus \le \Box \ \Leftarrow \sigma \Im T \Box \ \Leftarrow \ \varphi \ \ \Box \ < \ f \Box \ \theta \ \downarrow \pm \sigma \Box \ \leftrightarrow \therefore \varphi \langle T \epsilon TT \ \# \ b \in \Box \ \downarrow \Box \ d \in \Box \ \phi \ \downarrow = \ b \in \Box \ \phi \ \downarrow = \ b \in \Box \ \phi \ \downarrow = \ b \in \Box \ \phi \ \downarrow = \ b \in \Box \ \phi \ \downarrow = \ b \in \Box \ \phi \ \downarrow = \ b \in \Box \ \phi \ \downarrow = \ b \in \Box \ \phi \ \downarrow = \ b \in \Box \ \phi \ \downarrow = \ b \in \Box \ \phi \ \downarrow = \ b \in \Box \ \phi \ \downarrow = \ b \in \Box \ \phi \ \downarrow = \ b \in \Box \ \phi \ \downarrow = \ b \in \Box \ \phi \ \downarrow = \ b \oplus \Box \ \phi \ \to \Box \ \phi \ \downarrow = \ b \oplus \Box \ \to \Box \ \phi \ \to \Box \ \to $					
$H \bigcup \not \not \subset \Box \mid \Box \otimes \delta \Box T \Box + \sim $	$31 \varepsilon \sqrt{]} \subset 2001 \operatorname{Tm} \wp \nu + \operatorname{Tm} \langle \psi \backslash T \rightarrow \theta \delta \Box + \varepsilon^{\operatorname{Tm}} \langle \Diamond \sigma \Box \Box \downarrow \rangle$				
$ \Box < \widehat{(}\Box \ \theta \lrcorner \bot \pm \sigma \Box \leftrightarrow \therefore \phi \langle T + \upsilon'' + \equiv^{TM} \wp \ \# \bot \delta \longrightarrow \theta \ \varepsilon \leftrightarrow \varepsilon \varsigma \Box \ TM \sigma \Box \ \therefore T \ \lrcorner \bot + \sim \Box \ \varepsilon \cap \Box \ \&$					
$\Box f\sigma TT.$					

σℑ√. σℑ√. 01 $\overline{0}4$ $\overline{2}0000 | \upsilon'' + \equiv \varepsilon < \Box \uparrow \Box \theta \Box \delta \Box \sigma \Im T \oplus \le \Box$ 30,800 01 $\overline{0}4$ $\overline{2}000\theta | \upsilon'' + \equiv \Box TT\Delta | > \delta \Box T | \therefore T$ 16,500 01 $\overline{0}4$ $\overline{2}000\theta \equiv :: '\sigma \mathfrak{I} \theta > \bullet < \Box T$ 500 $|\upsilon''+\equiv\downarrow|$ $\delta\Box$ $|\Box'\phi\Psi T \# \delta \Box \sigma T \oplus \Box$ 1,51,200 $|\upsilon'' + \equiv \theta T + \&\Box |\Box + | - \theta \exists$ $\theta > \bullet < \Box T \nu \epsilon T \Box t :: T$ 10,500 $\Box TT\Delta | > \delta \Box T | :: T \theta T + \& \Box \epsilon \delta \Box \sqrt{:: T}$ 1,57,740 1,68,240 $|\upsilon"+\equiv\downarrow|$ $|\Box +| - \theta \theta > \bullet < \Box T$ ϑ^{TM} :. T 7,400 $v < l \uparrow$ 2,400 $\equiv :: \sigma \mathfrak{I} \theta > \bullet < \Box T$ 3,000 12,840 31 $\overline{0}1$ $\overline{2}001$ $\theta \mid \upsilon'' + \equiv \varepsilon < \Box \uparrow \Box \theta \Box \delta \Box \sigma \Im T \oplus \le \Box$ 23,150 31 $\overline{0}3$ $\overline{2}001\theta | \upsilon'' + \equiv \Box TT\Delta | > \delta \Box T | \therefore T$ 50,450 31 $\overline{0}3$ $\overline{2}001\theta \equiv :: \sigma \mathfrak{T} \theta > \bullet < \Box T$ 750

 $\big| |\square < \bigcap \square \ \theta \ \exists \pm \sigma \square \ \leftrightarrow \therefore \phi \langle T + \forall \delta \square \ \big| \ \exists \pm \therefore \big\} \not \subset \big| \ \upsilon'' + \equiv Y''^{TM} \square \ \# \langle \sqrt{|\square} \ + \& \square \ .$

13. From the following particulars given by M/s Ravi Chemicals and Pharmaceuticals prepare a Departmental, Trading and Profit and Loss account for their two departments, viz, Chemicals Department and Pharmaceuticals Department for the year ended 31-03-2006

Opening Stock		Rs.
	Pharmaceuticals	5,000
	Chemicals	15,000
Raw ma	aterials consumed (Chemicals)	36,000
Stores	consumed	9,000
Wages		
	Pharmaceuticals	3,600
	Chemicals	6,000
Adverti	sement	1,500
Packing Expenses (Pharmaceuticals)		600
Office Expenses		4,800
Deprec	iation:	
	Factory equipment	3,200
	Building	1,600
Sales:		
	Chemicals	18,000
	Pharmaceuticals	90,000
Closing Stock:		
	Pharmaceuticals	6,000
	Chemicals	12,000

You are also given the following additional information.

- a. Pharmaceuticals are made of raw materials used by Chemicals department. The value of such materials used during the year by Pharmaceuticals Department was Rs.2,000.
- b. Pharmaceuticals making does not require any equipment.

σℑ√.

 $\Psi \mid TM \langle H \square : T$ $T:T \square T$ 3,000 $\sigma \Im \kappa \subseteq \phi \langle TH \Box : T$ 6,000 $|\Box \downarrow \leq \theta \therefore T$ 1.500 $\beta \subset \leftrightarrow \downarrow [+> \times K\sigma \Im T \subset \therefore T(\sigma \Im \kappa \subseteq \varphi \langle TH \Box \therefore T)$ 600 $\Box \mid \Box \otimes \delta \Box T K \sigma \Im T \subset :: T$ 4,800 $^{TM}\langle\sigma\mathfrak{J}T\rangle\bullet T<\Box$: $\beta \square \subset \leftrightarrow \downarrow \leq \ldots \downarrow \mid \square] \downarrow \leq \sigma \square \therefore T$ 3,200 1,600 νεΤ□ ↓±∴Τ 90,000 $\sigma \Im \kappa \subseteq \phi \langle TH \Box : T$ $T:T \square T$ 18,000 $\epsilon TT \angle + \Box \vee \Box \sigma \Im T \oplus \leq \Box$ $T:T \square T$ 6,000 $\sigma\Im\kappa \subset \phi\langle TH \Box : T$ 12,000 $MT \oplus \leq \Box \mid \downarrow \uparrow + \sim \delta \Box \epsilon \forall \# \Box \sigma \Im + \Box \epsilon \cap \Box \& \Box + \sim.$ $\sigma \Box \varnothing \therefore \theta T \varepsilon T + < \Box T \therefore \exists \upsilon f'' > \bullet + \} \not\subset \Box \mid \Box \varphi \lfloor \sqrt{\angle + \#} \langle \& \Box + \cup \rbrack \angle + \sim.$ $_: \varepsilon T + < \Box T \therefore \forall \langle \phi \langle \psi \downarrow \downarrow f \cong \exists < f \Box \psi [T \rightarrow \theta | \Box] \downarrow \le \sigma \Box \therefore T \forall \varepsilon \delta \Box \sigma \Im + \} \rangle < \Box T.$ δ—. ψ TT^{TM} \langle $+ \upsilon$ \int □ εθ+ \rangle ⊄ 1/8 ε+TM \langle T ε \sqrt{T} TM \langle ψ T εT+TM \langle T∴ \exists υ \int ">●+ □ |,J≤∃T+#⟨T,J=+~.

Section – C

III. Answer any Two of the following.

2 x 20 = 40M

14. Chandra Co. Ltd. Offered to the public 20,000 equity shares of Rs.100 each at a premium of Rs.10 per share, The payment was to be as follows:

On application	Rs.20
On allotment	Rs.40(including premium)
On first call	Rs.25
On second call	Rs.25

Applications received total for 35,000 shares; applications for 10,000 shares were rejected; those totaling 15,000 shares were allotted 10,000 shares and the remaining applications were accepted in full. The directors made both the calls. One Shareholder holding 500 shares failed to pay the two calls as consequence his shares were forfeited. 200 of these shares were reissued as fully paid @ Rs.80 per share.

 $\begin{array}{c} \#\langle +< \square \ \theta \ \downarrow \leq + \square \ \mid \mid * \exists T \phi \supset \& \square \ \sigma \exists 00/ \ \exists \therefore T \epsilon > \bullet \therefore \ \sigma \Im \sqrt{.4000/ \ \square \ \downarrow} \left[\cap \{\Upsilon \ \psi \square \ \{ " \ \Theta \ \downarrow = \neg \downarrow \leq \neg \{ \left[\downarrow \right[\ \sigma \Im \sqrt{.10/ \ \therefore} T \ \mid | @ \exists T \phi \langle T + T^{M} \wp \ X'' \downarrow \# \rfloor \& \square \ T \ \mid \Theta \square \ \neg \psi \downarrow T T < \square \ \mid \square \ \sigma \Im \sqrt{.20/ \ } \qquad \neq \downarrow \{ " \sigma T T + \mid \square \ \lor \square \ \mid \Pi \ \sigma \Im \sqrt{.40/ \ } \ \psi \downarrow T T < \square \ \{ \left[\square \ \square \ \square \ \square \ \square \ \neg \Im \sqrt{.25/ \ } \right] \ \end{array}$

15. A Head Office in Madras has a branch at Nellore. The H.O. send goods at invoice price. It sends goods 33 1/3% on cost. Find out the profit of the Branch on Stock debtor system.

	Rs.
Stock on 01-04-98 (Invoice Price)	1,50,800
Debtor on 01-04-98	1,14,000
Goods sent to branch (Invoice Price)	6,70,000
Branch sales	
Cash	3,10,000
Credit	3,74,000
Cash received from debtors	4,00,000
Bad debts	2,500
Discount allowed to customers	3,000
Expenses	67,000
Stock on 31-03-99 (Invoice Price)	1,34,800
	1

01 $\overline{0}4$ $\overline{9}8$ H = { $\int \delta \Box \sigma \Im T \oplus \le \Box$ (\Box H = $\psi \Box \sigma T T \delta \tau < \int \Box \sigma \Im$) 1,50,800

01 $\overline{0}4$ $\overline{9}8$ H \square { \square TT Δ >•	$\delta \Box T \therefore T$ 1,14	,000
υ"+≡₊∫ □ + —θδ□ σℑΤ€	$\leq \Box (\Box H\Box \psi \Box \sigma TT \delta \tau < $	(□ σℑ) 6,70,000
υ″+≡νεT□ ₊±∴T		
$\theta > \bullet < \Box T$	3,10,000	
νσℑΤεν	3,74,000	
$\Box TT\Delta > \bullet \delta \Box :: \theta T + \& \Box$	εδ□ √}⊃∏θ θ>•<□ Τ	4,00,000
$\sigma \Box \Box \upsilon'' \rightarrow \Upsilon \therefore T$	2,500	
$Y''^{TM} \subset \sigma \mathfrak{I} : \oplus \leq \nu \theta T$	εΤ⇐+≡θ &□ κ∑¬+≥Τ	3,000
KσℑT⊂∴T	67,000	
31 $\overline{0}3$ $\overline{9}9$ H \square { $\int \delta \square \sigma \Im T \oplus \Im$	$\leq \Box (\Box H\Box \psi \Box \sigma TT \delta \tau < \int$	$\Box \sigma \mathfrak{I}$) 1,34,800

16. On 01-01-2003 Keerti Co. Ltd. issued 7% Debentures of Rs.6,00,000 with a condition that they should be redeemed after 3 years at 10% premium. The amount set aside for the redemption of debentures is invested is 5% Government Securities. The sinking fund table shows that 0.31720856 at 5% compound interest in 3 years will become Rs.1. you are required to write the journal entries for recording the above transactions for three years.

J.M.J.COLLEGE FOR WOMEN, TENALI::(Autonomous) Financial Services-Banking – II B.Com General, III Semester Syllabus

Max.Marks:70M

Objective: To impart knowledge on Banking and Insurance concepts and to gain an insight on Financial Services

Unit - I: Introduction to Financial Services

a. Meaning of Financial Services, Structure of Indian Financial System Importance of

Financial system for the economic development.(Financial and Banking system charts) b. Definition of Bank, Functions of Commercial Banks and Reserve Bank of India.(Forms of various accounts and deposits)

Unit - II: Banking Systems and its Regulation

a. Banking Systems – Branch banking, Unit Banking, Correspondent banking, Groupbanking, Deposit banking, Mixed banking and Investment banking. An overview ofbanking; Banking Sector Reforms with special reference to Prudential Norms: capitaladequacy norms, income recognition norms, classification of assets and NPAs;

Innovations in Banking -ATMs, E-Banking, Credit cards, Online & Offshore Banking, etc.(working and operations)

Regional Rural banks, Cooperative banks, Micro Finance, Priority Sector Lending, Indigenous banking, Role of NABARD, Development Financial institutions –SFC, SIDBI.

Unit - III: Banker and customer, loans and advances:

a. Banker and customer definition and their relationship, types of customers and modes of operations, procedure and precaution for opening an account, pass book & its features,Rights, duties and obligations of the banker (Application forms for opening accounts,Cheque Books, pass books, requisition slips for withdrawals and deposits, bankstatements,etc)

c. Types of loans and advances, principles of sound lending policies, credit appraisals of various forms of loans and advances-modes of creating charges - lien, pledge ,mortgage and hypothecation (Documents required for sanction of loans and advances).

Unit - IV:Negotiable Instruments:

Promissory Note and Bills of Exchange and Cheque, differences between them, types ofcrossing the cheque, payment of cheque and consequences of wrongful dishonor, collection of local and upcountry cheques, responsibilities and liabilities of collectingbanker and statutory protection to the collecting banker.(Promissory notes, B/E, Crossedcheques-various modes)

Books Recommended:

New Country Publications

- 1. Financial Sector of India Emerging Challenges, R.K.Uppal 2009
- 2. Banking & Financial Market in India 1947-2007, Niti Bhasin 2008
- 3. Banking Developments in India 1947-2007, Niti Bhasin 2006
- 4. Baking & Insurance, Kalyani Publications 2009

J.M.J.COLLEGE FOR WOMEN, TENALI::(Autonomous) Business Statistics – II B.Com General, III Semester Syllabus

Max.Marks:70M

Objective: The objective of this paper is to impart knowledge on the application of statistical tools and techniques in business decision making & use of MS-Excel in interpretation of statistical data.

UNIT 1: Introduction to Statistics

Meaning, definition, importance and limitations of statistics. Collection of data-PrimaryAnd Secondary data –(Sampling-Random-Non Random-Census)Schedule and questionnaire – Frequency distribution –Tabulation Diagrammatic and graphic presentation of data using Computers (Excel)

UNIT 2: Measures of Central Tendency

Definition Objectives and Characteristics of measures of Central Tendency TypesOf Averages – Arithmetic Mean, Geometric Mean, Harmonic Mean, Median, Mode, Deciles,Percentiles, Properties of averages and their applications. Calculation of averages using

computers.

UNIT 3:Measures of dispersion

Meaning, definitions, Properties of dispersion Range Quartile Deviation –Mean Deviation Standard Deviation Coefficient of Variation.

UNIT 4:Skewness

Skewness definition Karl Pearson's and Bowley's Measures of skewnessNormalDistribution Calculation of Dispersion and skewness using Computers.

Suggested Readings:

- 1. Statistics Problems & Solutions
- 2. Fundamentals of Statistics
- 3. Business Statistics

V.K.Kapoor D.N.Elhance Aggarwal Bharadwaj, K.Raghuveer Kalyani Publicatons – 2009

J.M.J.COLLEGE FOR WOMEN, TENALI::(Autonomous) Taxation – II B.Com General, III Semester
Syllabus

Max.Marks:70M

UNIT 1:

Income Tax Act 1961 – Important Definitions – Residential Status – Incidence of Tax Exempted Incomes – Agricultural Income.

UNIT 2: Computation of Income from Salaries

H.R.A – Entertainment Allowance – R.F.A – Perquisites –Statutory Fund – Gratuity Fund – R.P.F.

UNIT 3: Computation of Income from house property and Income from Business or Profession

Standard Rent – Actual Rent – Fair rental value – elf occupied House –Unrealized Rent – Interest – deemed to be let out

Deductions allowed – section 30-35E- Other Deductions – section 36- disallowed expenses – section 40- Deemed profits – valuation of stock

UNIT 4: Computation of capital Gains and Computation of Income from other sources

Introduction – Transfer of capital Assets – Determination of cost of Acquisition of Assets and cost of improvement – Procedure for calculation of capital gain – taxation of capital gains – Exempted capital gains.

Taxable Incomes – Dividends, Lotteries, Crossword Puzzles Types of Securities – Allowed Deductions, Disallowed Deductions – Tax free securities – Less Tax Securities – Tax free commercial securities.

UNIT 5:Gross Total Income

Gross Total Income Deductions U/S 80, 80CC to 80U and problems – Assessment of individuals – Computation of Tax – Income self -Assessment of Individuals and set off and carry forward of losses – Collection and Recovery of Taxes – Tax deducted at source – Advance Tax – Format and Filling of Form-16

Suggested Readings:

- 1. Income Tax Jai Bharat Publishers-2009
- 2. Income Tax Kalyani Publishers-2009
- 3. Elementary Income Tax V.P.Gaur & D.B.Narang -2009
- 4. Taxation Appolo Publishers 2009

J.M.J.COLLEGE FOR WOMEN, TENALI::(Autonomous) Financial Services-Banking – II B.Com General, IV Semester Syllabus

Max.Marks:70M

Objective: To impart knowledge on Banking and Insurance concepts and to gain an insight on Financial Services

Unit I: Introduction

Definition/ Meaning of Insurance and reinsurance, Principles of Insurance, kinds ofInsurance, advantages of insurance, globalization of insurance and insurance sectorreforms in India.

Unit 2: Types of Insurance and its regulation

a. Life Insurance – Practical aspects of Life Insurance, procedure for issuing a lifeinsurance policy, issue of duplicate policies, nomination, surrender value, policy loans, assignment, revivals and claim settlement.(Formats of types ofInsurance)

b. Non-Life Insurance-Types of products and scope of Fire Insurance, Marine Insurance, Health Insurance, Social Insurance and Rural Insurance. Regulation of Insurance in IndiaInsuranceAct, 1938 and IRDA 1999. (Formats of types of Non-Life Insurance)

Unit 3: Financial Markets:

a. Indian Money Market -Characteristics, Structure, composition (call and notice money, market, treasury bills market, CDs, CPs, short term bill market, MMMFs and DFHI) problems and reforms in Indian money markets (CDs,CPs,Treasury Bills)

b. Indian capital market composition and growth of primary and secondary markets, differences between primary and secondary markets, capital market reforms and NBFCs in capital markets; Stock Exchanges, NSE, OTCEI, Online Trading and role of SEBI.

Unit 4: Financial intermediates and Services:

Financial intermediaries and services: Merchant bankers, Mutual funds, Leasing companies, Venture Capital Funds, Forfaiting, Loan Syndication, Factoring, Custodial Services, Depository Services, and Depository Participants.(Documentation)

Books Recommended:

New Country Publications

- 1. Financial Sector of India Emerging Challenges, R.K.Uppal 2009
- 2. Banking & Financial Market in India 1947-2007, Niti Bhasin 2008
- 3. Banking Developments in India 1947-2007, Niti Bhasin 2006
- 4. Baking & Insurance, Kalyani Publications 2009

J.M.J.COLLEGE FOR WOMEN, TENALI::(Autonomous) Business Statistics – II B.Com General, IV Semester Syllabus

Max.Marks:70M

Objective: The objective of this paper is to impart knowledge on the application of statistical tools and techniques in business decision making & use of MS-Excel in interpretation of statistical data.

UNIT 1:Measures of Relation - Correlation:

Meaning, definition and use of correlation – Types of correlation Karlpearson's Correlation coefficient – Spearman's Rank correlation - probable error - Calculation of Correlation by Using Computers.

UNIT 2: Measures of Relation – Regression:

Meaning and utility of Regression analysis comparison between correlation and Regression – Regression Equations Interpretation of Regression Coefficient.Calculation of Regression by Using Computers.

UNIT 3: Analysis of Time Series & Index Numbers:

Meaning and utility of time series Analysis - Components of Time series– MeasurementOftrend and Seasonal Variations – Utility of Decomposition of Time Series-DecentralizationOfData - Calculationof trend and seasonal variations using computers.

UNIT 4: Index Numbers

Meaning, Definition and Importance of Index Numbers- Methodsof Construction of Index Numbers – Price Index Numbers – Quantity Index Numbers – Tests of Adequacy of Index Numbers – Deflating Index Numbers – Cost of Index NumbersLimitationof Index Numbers. Calculation of index numbers using computers.

Suggested Readings:

- 1. Statistics Problems & Solutions
- 2. Fundamentals of Statistics
- 3. Business Statistics

V.K.Kapoor D.N.Elhance Aggarwal Bharadwaj, K.Raghuveer Kalyani Publicatons – 2009

J.M.J.COLLEGE FOR WOMEN, TENALI::(Autonomous) Taxation – II B.Com General, IV Semester

Syllabus

Max.Marks:70M

UNIT I : Introduction

Taxes – Meaning – Need for and Rationale of taxes – Direct and Indirect Taxes Constitutional Provisions on Taxation – Union List -State List – Tax Rates – Blanket Rate

Method – Slab Rate Method – Surcharge – Cess – Progressive v/s Regressive Taxes. – An Overview of Taxation System in India.

UNIT – II: Wealth Tax

Wealth Tax Act 1957 – Charge of Wealth Tax – Valuation Date – Location of Assets-Assets – Meaning – Deemed Assets – Net Wealth – Computation of Net Wealth – Valuation of Assets-Return of Wealth and Procedure of Assessment – Time Limit for Completion of Assessment. (Including Problems)

UNIT – III: Sales Tax

Central Sales Tax –: Definitions Dealer, Declared Goods, Place of Business, Sale, SalePrice, Turnover – Inter State Trade or Commerce – Computation of Taxable Turnover- Assessment and Returns under CST Act (Including Problems)

APVAT Act, 2005 – Statement of Objectives and Reasons – Definitions: Business CasualTrader, Dealer, Input Tax, Output Tax, Place of Business, Tax Invoice, Total Turnover, Turnover Tax. – Computation of Taxable Turnover – Registration Procedure (IncludingProblems)

UNIT – IV: Service Tax

Service Tax Act, 1994 – Introduction – Meaning of Service – Classification of TaxableServices – Valuation of Taxable Services - Registration – Assessment Procedure.

UNIT – V: Central Excise & Customs

Central Excise Duty – Definitions –Types of Duties –Classification(only Theory)Customs Duty – Important Definitions – Goods, Import, Export, Importer, Exporter,Bill of Entry Import and Export Procedure(only Theory).

Suggested Readings:

- 1. Income Tax Jai Bharat Publishers-2009
- 2. Income Tax Kalyani Publishers-2009
- 3. Elementary Income Tax V.P.Gaur & D.B.Narang -2009
- 4. Taxation Appolo Publishers 2009

J.M.J.COLLEGE FOR WOMEN, TENALI:: (Autonomous) Financial Services- Banking– IIB.Com General, III Semester Model Question Paper

Time:3Hrs.Max.Marks:70M $\Box \ \delta_{+} \leq \Box \ H\Box \ \mu$ $v\Box \ \Box \ |\Box \ \Xi \Box \ \Box \ \Theta \leq \Box \ \delta \Box \ \Xi \forall H\Box \ \Box \ T \ \psi \Box \ \phi \langle TT \varepsilon TT.$ 10x1=10M

- $1. \quad \upsilon'' \leftrightarrow + \oplus \leq \Box \quad \theta T \ \Box \quad \sigma \mathfrak{I} \cap = + |\Box \quad \lor \epsilon T T.$
- 3. # $\bigcup \leq \Box \neg \theta T \Box \sigma \Im \cap = + |\Box \lor \varepsilon T T$.
- 4. \forall H \Box $\varsigma \Box$ " $\oplus \leq \Box \neg \nu \theta > \pm$ H \exists T?
- 6. $| = \pm \theta + > \times \nu \theta > \pm H \exists T?$
- 7. \Box] $\emptyset_{\downarrow} \leq \Box \delta \epsilon \nu + \phi \rangle \cong \exists T \{ \uparrow ? \}$
- 8. $\nu + TM \langle \sigma \Box \bullet \rho \phi \langle T \upsilon'' \leftrightarrow + \downarrow \downarrow \uparrow + > \times \theta T \Box \sigma \Im \cap \equiv + |\Box \lor \epsilon T T.$
- 9. $Y''^{TM} \subset \sigma \mathfrak{T} \not \not \subset \sigma \mathfrak{T} \not \to \sigma \mathfrak{T}$

 $10.^{TM}\langle \theta Y'' \nu \theta \rangle \pm H \exists T?$

□ δ₊J≤□ H□ _

 $\begin{aligned} |\downarrow\downarrow\uparrow+\sim\psi\Box \{ \left[\left\} \not\subset \cong < \left\{ \prod H\Box \quad \Re\sigma + \&\Box \quad T \right] \mid \Box \equiv \Box \quad \therefore \oplus \le \Box \quad \delta\Box \quad \epsilon \sqrt{<} \int\Box \quad H\Box \quad \therefore T \mid \psi\Box \quad \varphi \langle T \\ T\epsilon TT. \qquad 2x10=20M \end{aligned}$

- 11. $\upsilon'' + \equiv \upsilon'' \leftrightarrow + \oplus \leq \Box \quad$ $\flat'' \upsilon \cap \Box \quad \theta \chi \subseteq \ldots : T \exists \varepsilon] + \# \langle + \& \Box ? \rangle$
- $12.\# \bigcup \subseteq \Box \neg \varepsilon T] \varphi \langle TT _ \therefore T' \oplus \leq \Box \rangle \diamond \therefore T \exists \varepsilon] + \# \langle + \& \Box ? \rangle$
- $13. \forall" \leftrightarrow + \downarrow \leq \sigma \Psi \ \varphi \ | \ TT \downarrow \leq \neg \ \varsigma \square \ " \oplus \leq \square \ \neg \therefore T, \ \exists < \bigcap \square \ T \therefore T \ {}^{\mathsf{TM}} \ | \square \ + \& \square \ ?$

□ δ,J≰] H□ ¯δ—

 $\begin{aligned} |\downarrow|+\sim\psi\Box \{ f \neq \cong < \bigcup H\Box \ \Re\sigma + \&\Box \ T | \Box \ \Xi \Box \ \therefore \oplus \le \Box \ \delta\Box \ \varepsilon \sqrt{<} \ f\Box \ H\Box \ \therefore T | \psi\Box \ \varphi \langle T \\ T\varepsilon TT. \\ 2x20=40M \end{aligned}$

 $14.\psi\Box \ \Delta [\cup \leftrightarrow \upsilon'' \leftrightarrow + \oplus \leq \Box \ \therefore \exists < \Box \ T \therefore \theta T \exists \varepsilon] + \# \langle + \& \Box ? \rangle$

 $15.\upsilon'' \leftrightarrow + \lrcorner [+>\times] \square \square + \# \langle \varepsilon TT \rangle \not\subset H \square \upsilon'' \sigma \Psi f \nu + \sim + \#] \square \delta \varepsilon :: \theta T \exists \varepsilon] + \# \langle + \& \Box ?$

 $16.\epsilon\delta\Box \ \ \forall \therefore T \ \upsilon'' \leftrightarrow + \downarrow \leq \sigma \Psi \ \phi \ \ \ TT \downarrow \leq \neg \exists < f\Box \ \ T \ \therefore \theta T \ \upsilon'' < f\Box \ \leftrightarrow^{\mathsf{TM}} \langle \ \therefore \theta T \ \exists \epsilon] + \# \langle + \&$

 \Box ?

J.M.J.COLLEGE FOR WOMEN, TENALI:: (Autonomous) Taxation– IIB.Com General, III Semester Model Question Paper

Time:3Hrs.

Max.Marks:70M

□ δ₊J≤□ H□ μ $v \square \square ||\square \Xi / \square \therefore \oplus \le 0 \delta \square \epsilon \sqrt{< (\square H \square \therefore T)} \psi \square \phi \langle TT \epsilon TT.$ 10x1=10M 1. $\varepsilon \leftrightarrow \varepsilon \kappa \subset \phi \langle T \downarrow \leq \Box \rangle \ll \phi \langle T \varepsilon T T \lor \psi \rangle \cong \exists T \{ (?) \forall \psi \in V \land \psi \in V \}$ 2. $\varepsilon T \sqrt{...} < \int \Box \theta \varepsilon \leftrightarrow \phi \langle T \varepsilon T T v \theta \rangle \pm H \exists T ?$ 3. $\Xi(\Xi) \cap \mathsf{TM} \langle Y'' \mathsf{TM} \Box \delta \Box + K \leftrightarrow v + \phi \rangle \cong \exists T \{ (?) \}$ 4. $\Box + \{ \int v < | \uparrow v : \psi | H | \diamond \theta T | \varepsilon \lor \cong \exists < \int \Box + \flat \pm \flat \sqcup \int \neg + \# | < \Box \varepsilon \lor ? \}$ 5. $\Box \ \delta \downarrow \leq \Box \ H \Box \ 24 \ \downarrow \downarrow + < \Box \ ^{\mathsf{TM}} \langle \angle Z + | \Box \lor \therefore T \theta T \ ^{\mathsf{TM}} \ \downarrow \therefore T | \Box \lor \varepsilon T T?$ 6. $\varepsilon \delta \Box \sqrt{::} T \downarrow \pm \Box v < | \uparrow v + \phi \rangle \cong \exists T \{ (?) \}$ 7. $\varepsilon T \sqrt{...} < \int \Box \ \theta \Box \ \delta - \emptyset \Box \ \sigma \Im \cap = + |\Box \ \lor \varepsilon T T.$ 8. $\Box \ \delta \downarrow \leq \Box \ H \Box \ 80 \ \overline{\Box} \ | \downarrow | + < \Box \ ^{\mathsf{TM}} \langle \angle Z + | \Box \lor \therefore \theta T \ ^{\mathsf{TM}} \langle \therefore | \Box + \& \Box$. 9. $\varepsilon T \sqrt{..} < \int \Box \theta$ $\forall \upsilon \int \Box \Box \int \upsilon \sigma \Im \varnothing \varepsilon TT \exists \varepsilon] + \# \langle + \& \Box \rangle$. 10. $\square \square \langle \sigma \Im \square \langle \Box \rangle = \square \square + \{ \Box \square | \sigma \wp \neg \theta T \varepsilon T T. \}$ □ δ₊J≤□ H□ $|\downarrow| + \psi = \{ f \neq \cong < \forall \Pi H = \Re \sigma + \& = T \mid = \Xi / = :: \oplus \le = \delta = \varepsilon \sqrt{<} f = H = :: T \mid \psi = \varphi \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon \sqrt{<} f = H = :: T \mid \psi = \varphi \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus = \delta = \varepsilon / \langle T \mid = \Xi / = \Xi / \oplus = \delta = \varepsilon / \langle T \mid = \Xi / \oplus = \delta = \varepsilon / \langle T \mid = \Xi / \oplus = \delta = \varepsilon / \langle T \mid = \Xi / \oplus = \delta = \varepsilon / \langle T \mid = \Xi / \oplus = \delta = \varepsilon / \langle T \mid = \Xi / \oplus = \delta = \varepsilon / \langle T \mid = \Xi / \oplus = \delta = \varepsilon / \langle T \mid = \Xi / \oplus = \delta = \varepsilon / \langle T \mid = \Xi / \oplus = \delta = \varepsilon / \langle T \mid = \Xi / \oplus = \delta = \varepsilon / \langle T \mid = \Xi / \oplus = \delta = \xi / \langle T \mid = \Xi / \oplus = \delta = \delta = \varepsilon / \langle T \mid = \Xi / \oplus = \delta = \xi / \langle T \mid = \Xi / \oplus = \delta = \xi / \langle T \mid = \Xi / \oplus = \delta = \xi / \langle T \mid = \Xi / \oplus = \delta = \xi / \langle T \mid = \Xi / \oplus = \delta = \xi / \langle T \mid = \Xi / \oplus = \delta = \xi / \langle T \mid = \Xi / \oplus = \delta = \xi / \langle T \mid = \xi / \oplus = \delta = \xi / \langle T \mid = \xi / \oplus = \delta = \xi / \langle T \mid = \xi / \oplus = \xi / \oplus = \delta = \xi / \langle T \mid = \xi / \oplus = \xi /$ TETT. 2x10=20M $11. \sim \mathsf{IE} \ \delta \square \ + < \square \ \sigma \mathfrak{IE} \ \mathsf{ETT} \ \mathsf{IE} \ |\square \ \theta \mathsf{T} \square \ \exists \sim \mathsf{IE} \ \mathsf$ $\theta T \left| \supset \downarrow \right| \neg + \# \left< + \& \Box \right|$ **σ**ℑ√. $\mu.\varepsilon T \sqrt{:} \psi^{TM} \langle \theta \varepsilon TT H \downarrow : \oplus \leq \Box$ 4,000 $. \dashv \leq \sigma \mathfrak{T} \mathbb{T} \lor \upsilon \cap \Pi \land \mathsf{T} \land \mathsf{T} \lor \mathsf{T} \lor$ 1.000 $(\delta \Box \downarrow \cap \delta \Box T | \Box \varphi | \forall \cup H \Box \therefore \Box \exists T^{\mathsf{TM}} \langle | + 50\% \ \vartheta^{\mathsf{TM}} \langle + \rangle \not\subset \lrcorner \leq \therefore T \delta \Box T | + \sim)$ δ—... ϕ (\sqrt{H} #[*'+|... \vee 4,000 &□ ...J≤MTω□ H□ 6,000 \Box .u $\not\subset \theta \delta \tau$ 5,000

```
(2001 \cup H \square \upsilon'' ) \supset \downarrow \leq \neg \therefore | \square \downarrow \pm \sigma \mathfrak{I} + \cup H \square \upsilon'' \quad \overline{5} \therefore \downarrow \leq \square \therefore T)
12.\lambda \oplus \leq \Box \varepsilon \sqrt{\sigma \Psi} \phi (TT \downarrow \leq \neg \Box < \Box \phi \langle T \exists \varepsilon \sigma \Box \Box T \downarrow (+ \sim \Box \varepsilon \cap \& \Box \theta \exists .
                   \mu. ABC \downarrow \leq +\Box \mid \mid \theta T + \& \Box \exists \& \mid +\& \Box T \sigma \Im T.1,000
                   \beta \leq \lambda \leq \kappa \leq H = \frac{1}{2} \quad \varepsilon \leftrightarrow \varphi \langle T \kappa \leq \varphi \langle T + \theta T + \& \Box \rangle \leq \varphi \langle T + \sigma \Im \sqrt{20,000} \rangle
                   \delta \longrightarrow \sigma H = \frac{1}{2} \delta \varepsilon \therefore T \# \delta \to \theta + < T \oplus \le > \pm \theta T \upsilon ("\sigma \mathfrak{I}^{\mathsf{TM}} < \exists \mathfrak{L}) + \exists \mathfrak{L} \delta \oplus \mathfrak{L} < \varepsilon \in \mathsf{I}
                  ]+#\langle \Box \& \Box \Theta \Im^{TM} \langle + \sigma \Im \sqrt{.9,800} \rangle
                   \psi \square \leftrightarrow \beta \sqsubseteq \sigma \square < \square \varphi \langle T + \sigma' \Im 0,000 \psi \langle TT^{TM} \rangle | + \upsilon \int "\sigma \Im^{TM} \langle < \exists \Xi / \square \downarrow | \square \downarrow | \square \downarrow | \square \& \square 
                   θ~.
                 \Box .\beta \subseteq \downarrow [\kappa \subseteq | H \Box | \neq \upsilon'' \leftrightarrow + \oplus \leq \Box \& \Box \beta \subseteq \Box \geq' \theta T + \& \Box \Box ] \diamond + = \theta, \delta @ \cap \downarrow \leq ] + = \theta \Box < \Box = \theta = 0
                 \Box \phi \langle T + \sigma \Im \sqrt{.5,000} \rangle
                   \mu \square \tau. \upsilon \left( "\sigma \mathfrak{I}^{\mathsf{TM}} \langle < \underline{} \Xi \end{pmatrix} + \left\{ \not \subset \mid \beta \sqsubseteq \mid - \mid + \equiv \theta \square \sigma \square H \square \right\} \not \subset \delta \boxdot \cap \mathbf{J} \leq ] + \# \langle \theta \square < \square \varphi \langle T + \sigma \square \varphi \rangle = 0
                   3√.10,000
                   \lambda \oplus \leq \exists \varepsilon \sqrt{\sigma \Psi} \mu \Re \sigma \delta - \& \lfloor + \{ \land \ ) H \exists \{ \land \Box \ ] f \theta \downarrow \Re \sigma \delta - \& \lfloor + \{ \land \delta - ) H \Box \ H \Box \ \Re \sigma
                    \delta - \& \left\{ + \left\{ \wedge \nu \sigma T T^{\mathsf{TM}} \right\} \mid \Box \ \theta T \Box \ \exists \sim \int + \mid \Box \ < \Box \ \angle \theta \ \Box \ < \Box \ \phi \langle \sqrt{\Box} \ \Box \ > \bullet \Delta \right[ + \# \langle + \& \Box \ . ] 
13... \downarrow \leq \Delta \Psi \sim \mathsf{IE} \ \square \ | \geq \mathsf{T}... \square \ \& \square \ \mathsf{T} : : \Theta \mathsf{T} \downarrow \leq \ast \angle \square \ \mathsf{H} \square \ \square \ \& \square \ \mathsf{T} : \psi \square \ \{ \left[ \begin{array}{c} \Theta \mathsf{T} + \& \square \ \square \ | \geq \mathsf{T} \\ \square \ \blacksquare \ \blacksquare \ \blacksquare \ \blacksquare \ e \mathsf{T} : \psi \square \
                   \dots \square \& \square T \therefore \theta T + \& \square \square < \square \phi \langle \sqrt{\therefore} \theta T \rangle \rightarrow \downarrow (\neg + \# \langle + \& \square .
                   \mu.\sigma\Im\sqrt{.40,000}, 14\% \Box \downarrow \leq *\exists T\phi \supset \& \Box \downarrow \leq +\Box \mid \mid \& \Box \psi \mid T + \#\langle \sigma\Im T' \# \rfloor \& -\Theta\exists.
                   \square
```

 $\begin{array}{l} \delta & - . \sigma \Im \sqrt{.80,000, 12\%} \mid \Box \ \theta T \Box \ \ ^{\mathsf{TM}} \langle \angle Z + \# \rfloor \upsilon / + \upsilon '' \sigma T T \ \beta \rfloor \sigma \Im T \dots \mid \geq \delta \tau \dots \ \Box \ \delta \oplus \leq \\ \Lambda \leftrightarrow \downarrow \{ \left[\ \therefore T \right] \end{array}$

& . $\sigma \Im \sqrt{.10,000, 10\%} X'' \rho \phi \langle T \mid \Box \Delta'' [\downarrow \leq \delta \Box] ... \mid \Box \longrightarrow \Re \downarrow \{ \land \diamond$

□ δ₊J≤□ H□ ¯δ—

 $\begin{aligned} |\downarrow\downarrow\uparrow+\sim\psi\Box \{ \left[\left\} \not\subset\cong < \left\{ \prod H\Box \quad \Re\sigma + \&\Box \quad T \mid \Box \; \Xi \not\Box \; :: \oplus \le \Box \; \delta\Box \; \epsilon \sqrt{<} \int\Box \; H\Box \; :: T \mid \psi\Box \; \phi \langle T \; T\epsilon TT. \\ 2x20=40M \end{aligned}$

∃εσ□ ∴Τ	σℑ√.	∃εσ□ ∴Τ	σℑ√.
To $TM = \Theta \square : \cap$	1,22,00	$By \varepsilon T + < \Box T \therefore \Box = \theta T > = \therefore T$	10,000
$To \upsilon'' \longleftrightarrow + \bigoplus \leq \Box \upsilon \Box \ \Box$	0	Βу□ □ ≠σω□ Η□ □]₊ι≤σ□ ∴Τ	2,000

$\kappa J + TM \Box \Box \downarrow ()$	3,000	_{Βy} ψ[√{″σℑΤ↓±σℑΤ	1,20,00
То	25,250	Βy ↓±σℑΤ ΚσℑΤ⊂∴Τ	0
μ □Τ₃ν Τ∴Τ □+-Τ3	55,000	By ϑ^{TM} \Box \therefore T	6,000
≤+	24,000	$\operatorname{By} \And \Box \ \Box \ \delta \in \theta \Diamond \downarrow \nu < \downarrow \uparrow$	4,600
To	4,500	By κ \subseteq < ∫□ σℑΔ ΚσℑΤ⊂∴Τ	1,600
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3,600	By $\kappa J + TM \langle K\sigma \Im T \subset :: T$	300
E		By $\upsilon'' \leftrightarrow + \oplus \leq \Box \nu \Box \ \Box \ \prod \epsilon \& \Box \ f$	14,800
To $\exists \Box \{ +> \times \Box \otimes E \}$		Ву	500
To $\Box \delta \Phi < \Lambda < \lambda 1 (\Upsilon \Box \Pi \circ$		$TM(TM\square \neg \land \phi \supset \ast \beta] H\square \delta @\neg \psi \square$	30,000
$\Box \ \delta \oplus \leq \Lambda \leftrightarrow] \{ \Upsilon \Box \mid \prod \varepsilon $		$\langle \not\subset \& \Box \beta \subseteq \Box \langle \land \#] \delta - \theta \sim$	47,550
$\begin{array}{c} \& \Box f \\ To \end{array}$		By TM 」∗⊂θ □ ∴ ∩	
>•□ ς□ ™δ—Ø θT+			
&□ v↓î	2,37,55		2,37,55
	0		0

θ∃.

 $_.\nu\theta T \epsilon T \Leftarrow +\# _ TM \langle \theta T \rangle \bullet T < \Box : \bot \pm \sigma \Im T \Box | \square 20\% \epsilon T] \varphi \langle TT | \Box] \downarrow \le \sigma \Box : \Box | \square 25$ %.

$$\begin{split} 15. \Box \downarrow \leq *\exists T \geq T \& \Box \downarrow \leq +\Box \mid \Box \rangle \not \subset \mid \Box \mid = \# \exists \delta \Box \mid T \mid \Theta \Box < \Box \mid \varphi \langle \sqrt{\Theta} + <\Box \mid + \sim > \bullet T \epsilon \exists \epsilon \sigma \Box \therefore \Theta T \lor v \\ + \sim \delta \Box \mid H \Box \mid = \& \Box \mid T. \lor \Box \mid \langle \mid \Theta T + \& \Box \mid 2010 \quad \overline{2}011 \mid \Box \mid \Theta T \Box \mid \Box \mid \sigma \Box \mid \varnothing \sigma \Im \land \delta \Box \mid +)) \Box \downarrow \mid v \\ TM \langle \Box \mid \Im^{TM} \langle + \Theta T + \& \Box \mid < \Box \mid \varphi \langle T + \downarrow \leq \Theta T \rangle = \Theta T \epsilon T \\ \mu. \epsilon T \sqrt{ \therefore \Im^{TM}} \langle + H \mid \therefore \oplus \leq \Box \mid \sigma \Im \sqrt{.11,000}. \end{split}$$

 $.\theta > \bullet \sigma \mathfrak{J} \mid \Box] \varsigma \Box \ \mathsf{^{\mathsf{T}}} \sigma \mathfrak{J} \lor ... \psi \ \theta \mathsf{T} \diamond \mathsf{H} \ \Box \oplus \leq \Box \ \sigma \mathfrak{J} \sqrt{.150}.$

 $\begin{array}{l} \delta & - \vdots \\ - \vdots \\ \cdot \vdots \\ \exists < \Box \leftrightarrow v \\ \vdots \\ \psi \\ \left(\theta T \diamond H \\ \vdots \\ \oplus \le \Box \\ \sigma \Im \\ \sqrt{.400} \\ (\epsilon TT > \bullet TZ \\ \sigma \Im T \\ \left| - \vdots \\ \vdots \\ \vdots \\ \oplus \\ \le \Box \\ \end{array} \right).$

& $\land \leftarrow] \angle \# \lor *' + \equiv \theta \psi \sqcup \leftarrow K \sigma \Im T \subset \therefore T \sigma \Im \sqrt{.25,000}$

- $\Box :\Box + \{ \left[v < \left(\Uparrow v : \psi \right) \\ \theta T \diamond H \right] : \oplus \le \Box \sigma \Im \sqrt{.6,000} (\Box v : \psi \\ \theta T \diamond I \overline{4} \overline{0}7 \theta T + \& \Box \theta T \diamond I \overline{4} \overline{0}7 \theta T + \& \Box \theta T \diamond I \overline{4} \overline{0}7 \theta T + \& \Box \theta T \diamond I \overline{4} \overline{0}7 \theta T + \& \Box \theta T \diamond I \overline{0}7 \theta T + \& \Box \theta T + \&$
- $31 \ \overline{8} \ \overline{0}7 \ \epsilon\sigma \Im \oplus \le \Box \ \Box \ \epsilon \cap \Box \ \& \boxdot.)+$
- $\Box \quad \text{int} := \{ \not \subset \nu^{\text{TM}} \langle \& \Box \ T \ \# \ | \ *' + \equiv \theta \ \nu < | \uparrow H \ | \ \therefore \oplus \le \Box \quad \sigma \Im \sqrt{.5,000} \} \}$

$$\begin{split} \mu |\Box \ \tau. \downarrow \leq +\Box \ | \ | \ \nu^{TM} \langle \Box \ \downarrow | \ \Box \ \downarrow \leq \Box \ \equiv^{TM} \langle > \bullet \Box \ \varsigma \Box \ "\epsilon \delta \Box \ \Leftarrow \downarrow \leq * \in + \equiv \theta \sim. \ \Box \ + <\Box \ T \oplus \leq \Box > \pm \\ \theta T \ \nu^{TM} \langle \& \Box \ \theta T + \& \Box \ \downarrow \leq +\Box \ | \Box \ \sigma \Im \sqrt{.1,000} \ \therefore T \ H \ | \ \therefore \oplus \leq \Box \ \epsilon \delta \Box \ \sqrt{...} T \ \# \] \phi \langle TT \# \langle T \theta \ \Box \ \sim. \end{split}$$

J.M.J.COLLEGE FOR WOMEN, TENALI:: (Autonomous) Business Statistics– IIB.Com General, III Semester Model Question Paper

Time:3Hrs.	Max.Marks:70M
 □ δ₊J≤□ H□ _μ	
ν□ □ □ Ξ/□ ∴⊕≤□ δ□ ε√< ſ□ H□ ∴Τ ψ□	φ(ΤΤεΤΤ.
10x1=10M	
1. $\kappa \subseteq +K \leftrightarrow \downarrow \leq \Xi (\gamma \epsilon T T \theta T \Box \sigma \mathfrak{I}) = + \Box \vee \epsilon T T.$	
2. $TM \square +\Xi \square \delta I \leq \sigma \Im \Delta \nu + \phi \geq \exists T \{ ?$	
3. $\delta \square > \bullet \ge T \nu \theta > \pm H \exists T?$	
4. $\psi \Box \leftrightarrow \nu \theta > \pm H \exists T?$	
5. $\psi \square \omega \square \epsilon T \leftrightarrow \epsilon T T \square \sigma \mathfrak{I} \cap = + \# \langle + \& \square ?$	
6. >●TΔεT< \Box ↔εTεTT φ TT , \Box]∃T™(T	$\Gamma \operatorname{Res} + \{ \Box \operatorname{Tm} \sqcup : \Box + \&\Box \}$

7. $\exists \delta \Box \mid \sigma \Im \Delta \nu + \phi \rangle \cong \exists T \{ \uparrow ? \}$ 8. ϵ { Υ ..., $\exists \sigma \Im \Delta \nu \theta \geq \pm H \exists T$? 9. $\delta \square > \bullet \ge T : \square \le \square \Delta'' : T \Re \sigma + \& \square + \{ \square TM : \square + \& \square ? \}$ $10.\psi [\square \omega \square \varepsilon T \leftrightarrow + \} \not\subset > \bullet \therefore \sigma \Im \downarrow \pm \therefore T \square [\therefore \square + \& \square ?$ □ δ₊J≤□ H□ $|\downarrow| + \psi = \{ f \neq \cong < \forall \Pi H \square \Re \sigma + \& \square T | \square \Xi / \square : \oplus \le \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \le \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \le \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \le \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \le \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \le \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \le \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \le \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \le \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : H \square : T | \psi \square \varphi \langle T | \square E / \square : T | \psi \square \varphi \rangle$ ΤεΤΤ. 2x10=20M $11. \sim \to T\varepsilon < \square M = |+\Xi(\square, \downarrow)(\nu, \downarrow) \leq \varepsilon T < \square \leftrightarrow \varepsilon T\varepsilon TT\theta T > \downarrow \# + \& \square ?$ $10\ \overline{2}020\ \overline{3}030\ \overline{4}040\ \overline{5}050\ \overline{6}060\ \overline{7}0$±′δτ∋ 5 11 7 8 μ τэ6 14 $12. \rightarrow \bullet T \varepsilon < \Box T \Box + \Xi (\Box \downarrow f 7 \varepsilon < \Box \Xi (+\Xi) \varepsilon T T, 90 \varepsilon \Xi) T \Box + \Xi \varepsilon T T = + \Xi (-+\#(++)) \varepsilon T T = - \pm f = -$ &□? 10 J≤+\$\$, ™\$\$\$ 10 2020 4040 6060 80 ε√σΨ¬◊϶ $3 \mu \oplus 4 \mu \oplus 4 \mu \oplus 4 \mu$ $\exists < \Box \leftrightarrow \sigma \Im T \hat{\Box} \therefore T \ni 8$ 10 22 25 10 5 $13. \sim \mathsf{T} \varepsilon \mid \Xi \mathbb{B} \Delta T \therefore \theta T + \& \Box > \mathsf{T} \Delta \varepsilon \sqrt{\langle \Box \ll} \Box \Box \rangle = \langle \neg + \# \langle + \& \Box \rangle$ 120 124 128 130 $\Box \sigma \Im T \varepsilon \vee$ э 118 132 135 $\exists < \Box \leftrightarrow \sigma \mathfrak{I} T \varnothing \therefore T \delta \Box + K \leftrightarrow$ 10 15 22 25 20 12 Ð 6 $\Box \delta \downarrow \leq \Box H \Box \delta \downarrow$ $|\downarrow| + \psi = \{ f \neq \cong < \forall \Pi H = \Re \sigma + \& = T \mid = \Xi / = :: \oplus \le = \delta = \varepsilon \sqrt{<} f = H = :: T \mid \psi = \varphi \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon \sqrt{<} f = H = :: T \mid \psi = \varphi \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus = \delta = \varepsilon / \langle T \mid = \Xi / = \Xi / \oplus = \delta = \varepsilon / \langle T \mid = \Xi / \oplus = \delta = \varepsilon / \langle T \mid = \Xi / \oplus = \delta = \varepsilon / \langle T \mid = \Xi / \oplus = \delta = \varepsilon / \langle T \mid = \Xi / \oplus = \delta = \varepsilon / \langle T \mid = \Xi / \oplus = \delta = \varepsilon / \langle T \mid = \Xi / \oplus = \delta = \varepsilon / \langle T \mid = \Xi / \oplus = \delta = \varepsilon / \langle T \mid = \Xi / \oplus = \delta = \varepsilon / \langle T \mid = \Xi / \oplus = \delta = \varepsilon / \langle T \mid = \Xi / \oplus = \delta = \xi / \langle T \mid = \Xi / \oplus = \delta = \xi / \langle T \mid = \Xi / \oplus = \delta = \xi / \langle T \mid = \Xi / \oplus = \delta = \xi / \langle T \mid = \Xi / \oplus = \delta = \xi / \langle T \mid = \Xi / \oplus = \delta = \xi / \langle T \mid = \Xi / \oplus = \delta = \xi / \langle T \mid = \xi / \oplus = \xi / \oplus = \xi / \oplus = \delta = \xi / \langle T \mid = \xi / \oplus =$ ΤεΤΤ. 2x20=40M $14. \sim > \bullet T\varepsilon < \Box \mathsf{TM} \Box | + \Xi(\Box \downarrow) \# \langle \mathsf{TM} \langle \mathsf{T}\sigma \Box \varnothing + \Xi \rangle \downarrow \leq \exists \# \langle :: \theta\varepsilon \mathsf{T}T\theta \mathsf{T} \rangle \supset \downarrow | \neg + \# \langle + \& \Box ? \rangle$ ${}^{\mathrm{TM}}\langle \sigma \mathfrak{I} \rangle \bullet \Leftarrow \nu + {}^{\mathrm{TM}}\langle \sigma \mathfrak{I} + \rightarrow 10 \ \overline{1}920 \ \overline{2}930 \ \overline{3}940 \ \overline{4}950 \ \overline{5}9$ $\beta \Sigma \theta i \mid \Box \lor \theta \leftrightarrow + i$ 4 20 38 24 10 $15. \rightarrow \bullet T\varepsilon < \Box \mathsf{TM} \ |\Xi(\Box \downarrow) \downarrow \downarrow \sigma \Psi' | - \phi \langle T\sigma \Im \Diamond H \Box \psi | \Box \omega \Box \varepsilon T \leftrightarrow \rightarrow \bullet T \Delta \downarrow \leq \varepsilon T T \theta T \rangle$ ⊃, ן (¬+#⟨+&□ ? ε√σℑΤ¬∴Τ $\exists < \Box \leftrightarrow \sigma \Im T \emptyset \therefore T$ $3 - \square \ge \oplus \mu \subset \phi + \ge \sqcup 0$ 150 $10 \downarrow \leq +\phi \supset \mu \oplus \leq \Box \neg \varepsilon$ 140 $20 \downarrow \leq +\phi \supset \mu \oplus \leq \Box \neg \varepsilon$ 100 $30 \downarrow \leq +\phi \supset \mu \oplus \leq \Box \neg \varepsilon$ 80

40 ₊≥+¢⊃ µ⊕≤□ ¬ε		80					
50 ┙≤+φ⊃ μ⊕≤□ ⊸ε		70					
3⊏ □≥⊕μ⊂∳+≥∟ ¬ε		30					
70 ┙≤+φ⊃μ⊕≤□ ⊸ε		14					
3⊏ □≥⊕µ⊂¢+≥∟ 08		0					
16.~>●Tε <□ ™□ +Ξ(□	」(₊	⊧ET3≥∟	3θ∴)#	ΤθΤ	,J≤θT>	>=0+&	\square ?
ל"ט ("∴Т э	10	$\overline{2}020$	$\overline{3}030$	$\overline{4}040$	$\overline{5}050$	$\overline{6}060$	$\overline{7}0$
$\delta\Box + \delta\Box \oslash \therefore \delta\Box + K \leftrightarrow$	Э	19	3	2	49	24	12

J.M.J.COLLEGE FOR WOMEN, TENALI:: (Autonomous) Financial Services- Banking– IIB.Com General, IV Semester Model Question Paper

Time:3Hrs.	Max.Marks:70M
□ δ₊J≤□ H□ _μ	
ν□ □ □ Ξ/□ ∴⊕≤□ δ□ ε√< ∫□ Η□ ∴Τ ψ□ φ⟨ΤΤεϊ	ГТ.
10x1=10M	
1. ; $(\varepsilon \sqrt{\nu + \phi}) \cong \exists T \{ ? \}$	
2. $ \Box \lor \Theta \downarrow \varnothing \varepsilon \lor \lor \downarrow \lor \varphi \Box \exists T \{ ?$	
3. $\sigma \mathfrak{I} < \Box T \uparrow \exists :: T \varepsilon \nu \theta > \pm H \exists T?$	
4. $\delta \Box \epsilon TT < \Box ; (\epsilon \sqrt{\nu + \phi}) \cong \exists T ??$	

5. $| = * \equiv \theta | < \Box \epsilon \leftrightarrow \epsilon TT \theta T \Box \sigma \mathfrak{I} \cap \equiv + | \Box \lor \epsilon TT.$ 6. $|\beta \leq \langle \beta \rangle = \exists T_{\downarrow} \leq \varepsilon \sqrt{\Re \sigma} = \exists T_{\downarrow} \langle \gamma \rangle$ 7. $|\Box \sigma \Im \delta \Box \in \sigma \Im \Box \sim \int v + \phi \rangle \cong \exists T \{ (?) \}$ 8. \Box T $\land \nu + \phi \rangle \cong \exists T \{ f :$ 9. $\beta \Box \subseteq \leftrightarrow \downarrow \leq \ldots] + > \times \theta T \Box \sigma \Im \cap = + |\Box \lor \varepsilon TT?$ 10. $\nu H \square$ $\exists \Pi H \square$ $| \phi \supset \& \square +> \times \nu + \phi \rangle \cong \exists T \{ (?) \}$ □ δ₊J≤□ H□ $|\downarrow| + \psi = \{ f \neq \exists < \forall \Pi H \square \Re \sigma + \& \square T | \square \Xi / \square : \oplus \leq \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \leq \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \leq \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \leq \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \leq \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \leq \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \leq \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \leq \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \leq \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : H \square : T | \psi \square \varphi \langle T | \square E / \square : T | \psi \square \varphi \rangle$ T_ETT. 2x10=20M 11.; $\int \varepsilon \sqrt{\varepsilon} \cdot \theta \downarrow \leq \cdot T > \bullet T \mid \Box \phi \mid \sqrt{\Box} H \Box \cdot \cdot \theta T \top (\cdot \cdot \Box + \& \Box ?)$ 12. $\nu \angle \Box$; $\int \epsilon \sqrt{\phi} \langle TT_{+} | \Box \rangle = \exists \epsilon] + \# \langle + \& \Box \rangle$ 13. $\varepsilon T \sigma \mathfrak{I} \subset + \{ \land \upsilon'' \leftrightarrow + \downarrow \leq \sigma \Psi \Box \delta \varepsilon : \theta T \exists \varepsilon] + \# \langle + \& \Box ? \rangle$ $\Box \delta \downarrow \leq \Box H \Box \delta \downarrow$ $|\downarrow| + \psi = \{ f \neq \cong < \forall \Pi H = \Re \sigma + \& = T \mid = \Xi / = :: \oplus \le = \delta = \varepsilon \sqrt{<} f = H = :: T \mid \psi = \varphi \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon \sqrt{<} f = H = :: T \mid \psi = \varphi \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \le = \delta = \varepsilon / \langle T \mid = \Xi / = : \oplus \in \Xi / \exists = \varepsilon / \exists$ T_ETT. 2x20=40M $14. \cup \left("\sigma \mathfrak{I}^{\mathsf{TM}} \langle < \underline{\exists} + \\ \forall \not < \bullet \\ \vdots \\ \left(\epsilon \sqrt{\sigma \mathfrak{I}} + \right) \bullet + \\ \forall \not < \epsilon \equiv \subset \theta \ \epsilon \sqrt{\sigma \mathfrak{I}} T \in \\ \vdots \\ \theta T \ e \\ \downarrow \\ \diamond \Box \ \delta \Box \ + \delta \Box$ $\neg \sigma \Im \Delta'' \therefore \Theta T \exists \varepsilon] + \# \langle + \& \Box ? \rangle$ 15. $9 \exists^{TM} \langle ; f \varepsilon \sqrt{\beta} \subseteq : \delta \longrightarrow X'' \downarrow \# \Box \delta \exists < f \Box \varepsilon TT \exists \varepsilon] + \# \langle + \& \Box ? \rangle$ ϵ]+#(+& \square ?

J.M.J.COLLEGE FOR WOMEN, TENALI:: (Autonomous)

Taxation– IIB.Com General, IV Semester	
Model Question Paper	

Model Question Paper
Time:3Hrs. Max.Marks:70M
□ δ₊J≤□ H□ ¯μ
ν□ □ □ Ξノ□ ∴⊕≤□ δ□ ε√< ſ□ H□ ∴Τ ψ□ φ⟨TΤεΤΤ.
10x1=10M
1. $\delta \square + \square < \square \square \Theta T \oplus \pm H \exists T?$
2. & $\therefore \sigma \Im T \theta T \Box \sigma \Im \cap = + \Box \lor \varepsilon T T. (\Box + < \int \Box \Box < \exists \land \exists \therefore T \varepsilon \Box < \int \Box]^{TM} \langle \Box \ \theta T \Box \# \langle \Box \rangle = 0$
$\geq+ 2005 \mid \mid \square \downarrow \pm \sigma \Im +)$
3. $\nu \in T \square $
4. $ \Box \ \Theta T \Box \ \Box \ \Theta \frown \phi \langle T \delta \tau \ \nu + \phi \rangle \cong \exists T \{ f \}$
5. $\mu + \{ \int :: T' \theta \mu \Box \Box \& \Box T \Box \Box \phi \sqrt{\angle \kappa \subseteq} \sigma \Im T. \}$
6. $\psi \Box \leftrightarrow \{\land \nu \theta > \pm H \rfloor \exists T?$
7. $\supset \geq \sigma \Psi \square \square \tau \Re \sqcup \& \square \{ \land \theta T \square \sigma \Im \cap \equiv + \square \lor \varepsilon T T.$
8. $\nu + TM \langle \sigma \Box \ \eta \ \nu \epsilon T \Box \downarrow \pm \vdots \oplus \leq \Box \ \delta \Box + \Box + \sim + \equiv \Re \sigma + \& \Box \ T \ \epsilon TTY'' \leftrightarrow + \Xi (\therefore \theta T \ \exists \epsilon] + \# \langle + \Box \rangle = \Im \sigma + \& \Box \ T \ \epsilon TTY'' \leftrightarrow + \Xi (\therefore \theta T \ \exists \epsilon) + \# \langle + \Box \rangle = \Im \sigma + \& \Box \ T \ \epsilon TTY'' \leftrightarrow + \Xi (\Box \ \theta T \ \exists \epsilon) + \# \langle + \Box \rangle = \Im \sigma + \& \Box \ T \ \epsilon TTY'' \leftrightarrow + \Xi (\Box \ \theta T \ \exists \epsilon) + \# \langle + \Box \rangle = \Im \sigma + \& \Box \ T \ \epsilon TTY'' \leftrightarrow + \Xi (\Box \ \theta T \ \exists \epsilon) + \# \langle + \Box \rangle = \Im \sigma + \& \Box \ T \ \epsilon TTY'' \leftrightarrow + \Xi (\Box \ \theta T \ \exists \epsilon) + \# \langle + \Box \rangle = \Im \sigma + \& \Box \ T \ \epsilon TTY'' \leftrightarrow + \Xi (\Box \ \theta T \ \exists \epsilon) + \# \langle + \Box \rangle = \Im \sigma + \& \Box \ \theta T \ \epsilon TTY'' \leftrightarrow + \Xi (\Box \ \theta T \ \exists \epsilon) + \# \langle + \Box \rangle = \Im \sigma + \& \Box \ T \ \epsilon TTY'' \leftrightarrow + \Xi (\Box \ \theta T \ \exists \epsilon) + \# \langle + \Box \rangle = \Im \sigma + \& \Box \ T \ \epsilon TTY'' \leftrightarrow + \Xi (\Box \ \theta T \ \exists \epsilon) + \# \langle + \Box \rangle = \Im \sigma + \& \Box \ T \ \epsilon TTY'' \leftrightarrow + \Xi (\Box \ \theta T \ \exists \epsilon) + \# \langle + \Box \rangle = \Im \sigma + \& \Box \ T \ \epsilon TTY'' \leftrightarrow + \Xi (\Box \ \theta T \ \exists \epsilon) + \# \langle + \Box \ \theta T \ \theta T \ \theta T \ \theta TY'' \leftrightarrow + \Xi (\Box \ \theta T \ \theta T \ \theta TY'' \leftrightarrow + \Xi (\Box \ \theta T \ \theta TY'' \leftrightarrow + \Xi (\Box \ \theta T \ \theta TY'' \leftrightarrow + \Xi (\Box \ \theta TY'' \to + \Xi (\Box \ \theta TY''' \to + \Xi (\Box \ \theta TY'' \to + \Xi (\Box \ \theta TY''' \to + \Xi (\Box \ \theta TY$
$\&\square$.
9. $\delta\Box + \Box < \Box \Box \theta T\Box \# \langle \geq \dots \Box \downarrow \pm \sigma \Im + \upsilon \int "\exists TM \langle \Box \delta\Box T \varnothing \therefore \theta T TM \lfloor \therefore \Box + \&\Box$.
$10. \mid \Box \sigma \wp \downarrow \leq \Box \mid \Box \theta T \Box \nu + \phi \rangle \cong \exists T \{ f ?$
□ δ₊J≤□ H□ _
$ \downarrow + \psi \square \{ f \neq \cong < [\Pi H \exists \Re \sigma + \& \Box T \Box \Xi] \Box : \oplus \le \Box \delta \Box \epsilon \sqrt{<} f \Box H \Box : T \psi \Box \phi \langle T \rangle \}$
TETT. $2x10=20M$
$11. \left \Box \ \delta \Box \ T \right {}^{TM} \langle \ \Box \] \varnothing \downarrow \leq \delta \Box \ + \epsilon^{TM} \langle \diamond \sigma \Im + \rangle \not\subset \nu + {}^{TM} \langle \sigma \Box \ \eta \ \nu \epsilon T \Box \ \downarrow \pm \therefore T \ \sigma \Im \sqrt{.74,50,000}$
$\cdot v \varepsilon T \Box \downarrow \pm \therefore \ \not \subset \Box \ \downarrow \downarrow \uparrow + \sim v + \Xi (\therefore T \downarrow \leq * \delta \longrightarrow \varepsilon \lor \theta \Box \ \exists.$
μ. μ \mathfrak{R} -J \square $A A \Box$ T+-J \leq + σ $\Im\sqrt{.3,50,000}$
$\\psi\Box \mid \Box \ \delta\Box \ T \ \# \ \downarrow \phi \langle T \epsilon \therefore \delta \longrightarrow \theta \ \downarrow \le + \phi \supset \sigma T T \theta \sigma \Psi \oplus \le \Box \ \&\Box \ \beta \sqsubseteq X'' \{ \land \sigma \Im \sqrt{.28,000} \ A \cup A$
$\delta - \cdot \mathbf{v} \mathbf{\epsilon} \mathbf{T} \Box \downarrow \leq + \# \underline{\delta} - \theta \ 6 \ \mathbf{H} \big\lfloor \therefore \therefore \big\} \not \sqsubset \Box \lor \psi \Box \mid \Box \ \delta \Box \ \mathbf{T} \# \underline{]} \delta - \theta \ \delta \Box \ \sigma \mathfrak{I} \mathbf{T} \oplus \leq \Box \ \sigma \mathfrak{I} \sqrt{.}$
1,50,000
$\&\Box . \forall \epsilon T \Box \downarrow \leq + \#] \delta _ \theta \ 6 \ H [:::: TM} < \Box T \Box] \forall \Box \Box \ \delta \Box \ T \#] \delta _ \theta \ \delta \Box \ \sigma \Im T \oplus \leq \Box \ \sigma$
ℑ√.75,000
$\Box \ . \ \nu \epsilon T \Box \ \downarrow \leq + \# \lrcorner \delta \longrightarrow \theta \ 6 \ H \bigl \lfloor \therefore \therefore \ {}^{TM} \langle < \Box \ T \Box \] \Leftarrow \sigma \Im \delta \Box \ \neg] + \equiv \theta \ \delta \Box \ \sigma \Im T \oplus \leq \Box \ \sigma \Im \sqrt{.5}$
0,000
$\mu \Box \tau. \varepsilon \sigma \mathfrak{I} \downarrow \exists \Box \lor \&\Box \kappa \Sigma \neg + \{\land \sigma \mathfrak{I} \sqrt{.30,000}$
$v \in T $ $\pm \pm \therefore \forall \neq = \forall \Rightarrow \delta = \forall \Rightarrow \forall = \forall \Rightarrow \forall$

 $\mu. \theta > \bullet < \Box T \& \Box \kappa \sum \neg + \ge T' \sigma \Im \sqrt{.15,000}$

_. νεT□ ↓≤+<□ σℑT # $[*'+=\theta; fε\sqrt{KσℑT⊂∴Tσℑ\sqrt{.8,000}}]$

- δ—. , =θT>=∴T<□ σℑT&□ T #[*'+≡θ σℑψ□ Δ'' KσℑT⊂∴T σℑ√.12,000
- $|\Box \ \theta T \Box \ \upsilon'' < \int \Box \ \leftrightarrow^{TM} \langle \theta T \ \rangle_{\rightarrow\downarrow} \int \neg_{+} \# \langle + \& \Box \ . \ |\Box \ \theta T \Box \ \neq \sigma \ge T \ 2\% > \pm \ \upsilon \ \int'' \exists + \# \langle + \& \Box \ . \ e^{-\pi} = \psi \ e$
- $12. \Box \delta + | \geq \land \mu \mathfrak{R} \downarrow \prod \Diamond X \land \# \langle \geq \ldots + | \downarrow | + \langle \Box \rangle > \bullet \therefore \exists \exists \langle \int \Box \delta \Box T + \downarrow \pm \therefore \theta T \exists \epsilon] + \# \langle + \& \Box \rangle.$

□ δ,J≤□ H□ ¯δ—

 $\begin{aligned} |\downarrow| + \psi \Box \{ f \} \not\subset \cong < \bigcup H \Box \quad \Re \sigma + \& \Box \quad T \mid \Box \quad \Xi \not\Box \quad \therefore \oplus \le \Box \quad \delta \Box \quad \epsilon \sqrt{<} \int \Box \quad H \Box \quad \therefore T \mid \psi \Box \quad \phi \langle T \\ T \epsilon T T. \\ 2x20 = 40 M \end{aligned}$

14. $\upsilon \left(\sigma \mathfrak{J}^{\mathsf{TM}} \langle \langle \bot \Xi \rangle + \right) \not\subset |\Box \ \theta T \Box \ \exists \langle \Box \ \theta \varepsilon T T \theta T \ \exists \varepsilon] + \# \langle + \& \Box ?$

- - $\mu. X \supset \prod |\Box \ \Pi \sigma \Psi \rangle \not\subset \Box \ > \bullet \Box \ \varsigma \Box \ \mathsf{TM} \delta \not \oslash \ \sigma \mathfrak{I} \sqrt{.10,00,000}$

 $\underline{} : \Xi / \gamma \equiv \text{Im} \langle \Diamond \mid \Box] \text{Im} \leq \sigma \Box :: T \sigma \Im \sqrt{...70,000}$

$$\begin{split} & \delta & - . \ \psi \big[\sqrt{\{ "\sigma \Im T \, \lrcorner \pm \sigma \Im T \, \kappa J + {}^{\mathsf{TM}} \Box \ \Box \ \Box} \big[\sigma \Im \sqrt{.5,35,000}, \epsilon \Box & \Leftarrow \downarrow {}^{\mathsf{TM}} \Box \leftrightarrow \sigma \Im \sqrt{.45,0} \\ & 00 \end{split}$$

& .9] $\mathsf{TM}(; fe \sqrt{\beta} \subseteq :. \delta \longrightarrow \sigma \mathfrak{I} < \Box \mathsf{T} \cap \mathfrak{I} :. \mathsf{Te} \sigma \mathfrak{I} \sqrt{.60,000}$

 $\Box : \theta \lor \leftrightarrow \phi \lor \forall \sigma \Psi \neg \not \models \Box \Rightarrow \bullet \Box \varsigma \Box \lor \delta \longrightarrow \sigma \Im \lor .40,00,000$

 $\mu |\Box \ \tau. \ \theta \sqrt{\longleftrightarrow} \varphi \langle \sqrt{\sigma} \Psi \neg \rangle \not \subset \Box \ \Rightarrow \bullet \Box \ \varsigma \Box \ \top M \delta \longrightarrow \varnothing \ \Box \ |\Pi \ \Box \ TT \Delta + \sigma \Im \sqrt{.5,00,000}$

 $\Box : \Im \exists^{\mathsf{TM}} \langle ; \mathsf{fe} \sqrt{\beta} \subseteq : \mathsf{d} \mathbb{C} \Box | \Pi \Box \mathsf{TT} \Delta + \sigma \mathfrak{I} \sqrt{.50,000}$

 $16. I,11,000 \downarrow [.] > \pm. \Box \mathsf{TM} \langle \in <\Box \downarrow \pm :: \theta \mathsf{T} \downarrow = \theta \mathsf{T} > = :: \mathsf{T} \# \exists \Xi (\&\Box \mathsf{T} . v^{\mathsf{TM}} \langle \theta \mathsf{T} 10,000 \downarrow [.] \\ |> \pm. \Box \mathsf{TM} \in \langle \Leftarrow | | \# \exists \Xi (\&\Box \mathsf{T} . \mathsf{M} \{ \Box \varphi \langle \mathsf{T} \sqrt{\Box} \{ \land \oplus \le \Box \sigma \mathfrak{I} \sqrt{.10} \# = |\Box \Box \theta v \exists \mathsf{T} \Box \mathsf{H} \Box \& \Box \mathsf{T} . \end{pmatrix}$

 $\mu. \ \sigma \Box \ \eta + \not \downarrow \Box \ \ast \nu \epsilon T \Box \ \downarrow \pm \therefore T \ 4,000 \ \downarrow (.) > \pm.$

 $_. \sigma \Box \eta + \psi \lfloor \therefore T \mid \Box * v \varepsilon T \Box \downarrow \pm \therefore T 2,500 \downarrow [.] > \pm.$

 $\begin{array}{c} \& \Box \ . < \exists \Xi / + \psi \ \vdots \ T | \Box \ \therefore \ v \epsilon T \Box \ \downarrow \pm \therefore T \ (\mu > \bullet T \epsilon T^{\text{TM}} \langle T \therefore T) \ 1,000 \downarrow [.] > \pm. \end{array}$

 $\square . \sigma \square \eta + \psi \big(\therefore T | \square \therefore] \square \omega \square ... \sigma \Im T \downarrow \pm \square \& \square \therefore \sigma \Im T \oplus \leq \square v \epsilon T \square \downarrow \pm \therefore T 1,500 \downarrow \big(... | > \pm ... T \square ... T □ .$

 $\mu |\Box \ \tau. \ \psi \Box \leftrightarrow \{ \land \neq \sigma \ge T \ 12.5\%$

J.M.J.COLLEGE FOR WOMEN, TENALI:: (Autonomous)

Business Statistics– IIB.Com General, IV Semester Model Question Paper

Time:3Hrs.

Max.Marks:70M

□ δ₊J≤□ H□ _μ
ν□ □ □ Ξ/□ ∴⊕≤□ δ□ ε√< ſ□ Η□ ∴Τ ψ□ φ⟨ΤΤεΤΤ.
10x1=10M
1. $\delta \Box \subseteq "\delta \Box + \Box + < \int \Box \epsilon TT \theta T \Box \sigma \mathfrak{I} \frown = + \# \langle + \& \Box ? \rangle$
2. $\nu \Theta T \omega \Box \downarrow \leq \exists \# \langle \therefore \Theta + \Box \sigma \Im \cap \equiv + \# \langle + \& \Box ? \rangle$
$3. \Box \iff \flat \in T\theta \exists \Xi @' \omega \Box \Delta \in :: \theta \downarrow \leq :: T \flat e T \Box \Box \phi \lfloor \sqrt{>\pm} :: T \Re \sigma + \&\Box + \{ \left[\Box TM \lfloor :: \right] \land d \in :: \theta \downarrow \leq :: T \land e T \Box \mid d \in T \land d $
$\square + \& \square ?$
4. $\delta \Box + Y'' \leftrightarrow \varepsilon \leftrightarrow^{TM} \langle \langle \omega \Box + \nu + \phi \rangle \cong \exists T \{ f \}$
5. $\delta \Box \subseteq "\delta \Box + \Box + \langle \Box + \rangle \not\subset \circ \circ : \sigma \circ \downarrow \pm : : : : \theta T \exists \epsilon] + \# \langle + \& \Box ?$
6. $\exists \pm : \exists \otimes \Delta T : \theta T \Box \sigma \Im \cap = + \# \langle + \& \Box \rangle$
7. $ \Box \varepsilon \Box \leftarrow \nu \theta > \pm H \exists T?$
8. $\delta \square \forall \equiv \delta \square + K \leftrightarrow \theta T \square \sigma \mathfrak{I} \cap \equiv + \# \langle + \& \square \rangle$
9. $\Box TT^{TM} \langle T \exists \# \langle \sigma \Im \Delta \nu + \phi \rangle \cong \exists T \{ \hat{?} \}$
10.
□ δ₊≤□ H□
↓ +~ ψ□ { [}⊄ ≅<\∏H□ ℜσ+&□ T □ Ξ/□ ∴⊕≤□ δ□ ε√< ∫□ Η□ ∴T ψ□ φ(T
TETT. $2x10=20M$
$11. \sim > \bullet T\varepsilon < \square TM \square + \Xi (\square \downarrow \delta \longrightarrow \in \varphi \langle T\sigma \Psi \delta \square H \square \sigma \square \leftrightarrow + \oplus \le \square \delta \square \varsigma \square "\delta \square + \upsilon (\square + < \square \delta \square \varsigma \square)$
$> \bullet T \Delta = \pm \Box > = \int - = + \# \langle + \& \Box \rangle$
X : 75 88 95 70 60 80 81 50
Y : 120 134 150 115 110 140 142 100
$12. \sim > \bullet T\varepsilon < \Box TM \Box + \Xi(\Box \downarrow [] \subset FO \diamond \bullet T\Delta \downarrow \pm \Box \Box] \land \downarrow [\neg + \# \langle + \& \Box ?$
X : 2 3 4 5 6
Y : 167 185 143 181 339
$13. \downarrow + < \Box = \varepsilon \land \Box = \delta \Box = TM \land +\Xi(\Box \downarrow (2004 \delta \Box +)) \phi (TT \downarrow \leq \neg \delta \Box \lor = \delta \Box + K \leftrightarrow \theta$
$T \kappa \underline{=} \epsilon \sqrt{\theta} \leftrightarrow \kappa \underline{=} \underline$
$\theta T = \theta T \epsilon T T?$
$\epsilon \delta \Box T \epsilon \vee \therefore T$ \Rightarrow P Q R S T

<∫□ σℑ(2003) э <∫□ σℑ(2004) э $\Box \delta \downarrow \leq \Box H \Box \delta \downarrow$ $|\downarrow| + \psi = \{ f \neq \cong < \forall \Pi H \square \Re \sigma + \& \square T | \square \Xi / \square : \oplus \le \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \le \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \le \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \le \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \le \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \le \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \le \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \le \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \le \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : \oplus \le \square \delta \square \epsilon \sqrt{<} f \square H \square : T | \psi \square \varphi \langle T | \square E / \square : H \square : T | \psi \square \varphi \langle T | \square E / \square : E / \square H \square : T | \psi \square \varphi \langle T | \square E / \square : E / \square H \square : T | \psi \square \varphi \langle T | \square E / \square : E / \square : E / \square : E / \square H \square : T | \psi \square \varphi \langle T | \square E / \square : E /$ 2x20=40M ΤεΤΤ. $14. \sim > \bullet T \varepsilon < \Box \mathsf{TM} \Box | \Xi (\Box \downarrow) (\downarrow \pm \sigma \mathfrak{I}' | - \phi \langle \mathsf{T} \sigma \mathfrak{I} \diamond \mathsf{H} \Box \ \delta \Box \ \varsigma \Box " \delta \Box + \upsilon (\Box + < \Box \ > \bullet \mathsf{T} \Delta \downarrow \pm \Box \ \Box ,$ $\delta\Box + \upsilon \int "\varepsilon \leftrightarrow \mathsf{TM} \langle < \wp \chi \underline{\subset} \Box \Box \rangle \to \downarrow \int \neg + \# \langle + \& \Box ?$ ХЭ ΥЭ $15. \sim > \bullet T \epsilon \exists \epsilon \sigma \Box \ \therefore \ \delta \Box \subsetneq " \phi \langle T + {}^{\mathsf{TM}} \wp \ \lrcorner \leq \Box \ \omega \Box \ \ldots \ \epsilon \sigma \Box \ Z \ \therefore \ |\Box \ < \Box \ \Uparrow \Leftarrow | \Box \ \epsilon \Box \ \Leftarrow | \exists$ $:: T\epsilon :: \Theta T$ $\delta \Box + \epsilon^{TM} \langle \Diamond \sigma \mathfrak{I} +$ Э 1981 1982 1983 1984 1985 1986 1987 1988 ∃∴Tε Э $16. \sim > \bullet T\varepsilon < \Box \mathsf{TM} \Box |\Xi(\Box \downarrow)| \Box - \omega \Box \sigma \Psi \Box < \Box \sigma \Im |\delta\Box \forall \equiv \delta\Box + \mathsf{K} \leftrightarrow \theta \mathsf{T} \downarrow \leq \theta \mathsf{T} > = \Box, \mathsf{v} \sim \downarrow \mathsf{TK} \to \mathsf{TK} = \mathsf{TK}$ $\pm \therefore |\Box] \epsilon \sigma \Im | \theta | \Box \downarrow \downarrow \downarrow \subseteq \Box \downarrow \pm \sigma \Im \downarrow \pm \therefore |\Box] \epsilon \sigma \Im | \theta | \Box \downarrow \downarrow \downarrow \subseteq \Box \therefore \theta T \delta \Box + \mathsf{TM} \langle \Box | \theta \exists \downarrow \downarrow \downarrow \downarrow \subseteq \Box \land \forall \downarrow \downarrow \downarrow \Box \rangle = 0$ $T\delta \Box T | \theta \Box < \wp \rangle < \wp \ \mathsf{TM} \big\lfloor \therefore |\Box + \& \Box \big|.$ $|\Box|] \epsilon \sqrt{\Delta +} < \int \Box \sigma \Im |\Box|] \epsilon \sqrt{\Delta +}$ $\epsilon \delta \Box T | \epsilon \vee$ < (s Α В С D

J.M.JCOLLEGE FOR WOMEN, TENALI (Autonomous)

III B.Com General

Semester - V

Elective - I

Advanced Corporate Accounting

P.P.W(4+1)

Unit – I: The Accounts of Holding Companies

The nature of holding companies – Legal requirements for a holding company – Schedule VI of the Companies Act and subsidiary companies – Preparation of consolidated balance sheet – cancellation of investment account – minority interest- cost of acquiring control or goodwill – capital reserve- preference share capital in subsidiary companies – debentures in subsidiary companies (including problems related to the single subsidiary company).

Lab: Computation of problems using Excel/Accounting packages.

Unit – II: Liquidation of companies

Scope, contributory preferential payments, preference dividend, Statement of affairs and deficiency/surplus account. Liquidators final statement of account, liquidators remuneration, receiver for debenture holders, list 'B' contributories(including problems).

Lab: Computation of problems using Excel/Accounting packages.

Unit – III: Human Resource Accounting

Human Resource Accounting: Definition, objectives, approaches, assumptions, advantages, limitations of HRA, HRA in India. Historical cost accounting, Replacement cost method, opportunity cost method.(theory only).

Suggested Readings:

- 1. R.L.Gupta, M.Radhaswamy : Corporate Accounting , Sultan Chand
- 2. M.A.Arunandam, K.S.Raman : Advances Accounting, Himalaya
- 3. Tulsania: Advanced Accounting, Tata Magrahills publications
- 4. Jain & Narang : Corporate Accounting, Kalyanipublilcations
- 5. S.M.Shukla: Advanced Accounting, SahityaBhavan.

J.M.JCOLLEGE FOR WOMEN, TENALI (Autonomous) III B.Com General Semester - VI Elective - I Advanced Corporate Accounting

P.P.W(4+1) Unit – I: Accounts of Electricity Companies (Double-Accounting System)

Meaning of double-account system, revenue account and net revenue account, capital account (receipts and expenditure on capital account) and general balance sheet, Replacement of an asset. Important provisions of Indian Electricity Act 1910, Electricity supply act 1948 and the Companies Act 1956 – Formats of relevant accounts – calculation of reasonable return and disposal of surplus. Preparation of net revenue account and Balance sheet (including problems).

Lab: Computation of problems using Excel/Accounting Packages).

Unit – II: Accounting for price level changes (Inflation Accounting)

Introduction, limitations of historical cost accounting, methods of accounting for price level changes – preparation of income statement and balance sheet under current cost accounting (CCA). (Including problems.)

Lab: Computation of problems using Excel/Accounting Packages).

Unit – III: Social Responsibility Accounting

Meaning, Nature of social responsibility, need, objectives, accounting concept and objectives of social responsibility, indicators of social performance(theory only).

Suggested Readings:

- 1. R.L.Gupta, M.Radhaswamy : Corporate Accounting , Sultan Chand
- 2. M.A.Arunandam, K.S.Raman : Advances Accounting, Himalaya
- 3. Tulsania: Advanced Accounting, Tata Magrahills publications
- 4. Jain & Narang : Corporate Accounting, Kalyanipublilcations
- 5. S.M.Shukla: Advanced Accounting, SahityaBhavan.

J.M.JCOLLEGE FOR WOMEN, TENALI (Autonomous)

III B.Com General

Advanced Corporate Accounting

Semester - V

Section – A

Max.Marks:70

Time : 3Hrs.

1. Answer All of the following. 1. $\Box \zeta A * f > x \downarrow \leq + \Box |\Box \Box \Box \sigma \Im \cap = + |\Box \lor \varepsilon TT.$ 2. $* \downarrow [\cap \&] \omega \Box H \Box \lor \theta > \pm H] \exists T?$ 3. $\varepsilon \lor \theta \varepsilon \varepsilon \theta \sigma \Im T \therefore \ > \downarrow [\neg + |\Box \lor \Box \varepsilon \Xi] \leftrightarrow \downarrow \leq^{TM} \langle \oplus \leq \Box \Rightarrow \bullet \therefore \downarrow \pm \sigma \Im \Delta'' \therefore T \Re \sigma + \& \Box + \{ [\Box TM [\therefore |\Box + \& \Box] \cdot \Box] + \& \Box] \cdot \Box] = + \& \Box] \cdot \Box = + \Box =$

9. $\varepsilon \leftrightarrow \varepsilon \varsigma \Box "\sigma \Box : \Box \psi] \sim J \leq \Theta \leq \Box \cup \mathsf{TM} \langle |\Box \sigma \mathfrak{T} \# \langle \varepsilon : : \delta \longrightarrow \Theta X'' _\mathsf{TM} \Box : : T \mathsf{TM} \downarrow : : |\Box + \& \Box :$ 10. $> \bullet T \& \Box \exists \land \Theta T \cong \exists < (\Box + > \pm \land \Box) = \downarrow (\neg + \# \downarrow < \Box : \varepsilon \lor ?$ Section – B

II. Answer any Two of the following. $2 \times 10 = 20M$

11. $\varepsilon \sqrt{\theta} \varepsilon \varepsilon \theta \sigma \Im T \therefore v \downarrow \Box + \{ +> \times | \Box \phi | \sqrt{\cup} H \Box \therefore T \mathsf{TM} | \therefore | \Box + \& \Box$. 12.

31.3.2003 H $\left\{ \left[\Box \delta \right] v \Box \Box : \Box \left\{ \Upsilon \ldots T \right\} \right\}$

$\nu \square \square \therefore T$	H *.	S *.	□ δ□ T ∴T	Н*.	S *.
	σℑ√.	σ ℑ√.		σ ℑ√.	σ ℑ√.
$\psi \square \{ f \in T \forall . < f \square \theta +$			∃∃<∫□ □ δ□ Τ. Γ	5,17,6	3,04,0
$\sigma \Im \sqrt{.10} - \psi \Box \{ f :: T $			31 3 1 996θ →=θ□ *. }	00	00
	5,00,0	2,20,0	⊄ 60%		
	00	00		1,62,4	
#(*'+≡θ∃	1,00,0	50,000	$\psi \square \{ " \therefore (K \downarrow < \Box T) \}$	00	
]∪σℑT∩∴T	00	60,000	│β⊆<∫□ ∃T₊J≤ KσℑT⊂		6,000
$\Box TT\Delta < \Box TM \langle :: T$	80,000	3,10,0	∴T		3,10,0
	6,80,0	00	1	6,80,0	00
	00			00	

 $31.3.2003 \text{ H} \mid \{ \left(\cong_{\leftarrow} \Upsilon_{\leftarrow} \leq^{\mathsf{TM}} \langle \Box \delta \mathbb{C} \right) \mid \Box \{ \Upsilon_{\ldots} \Box \exists^{\mathsf{TM}} \langle \varphi \langle \sqrt{\sigma} \Im T \# \downarrow \varphi \langle T + \& \Box \rangle \}$

 $\delta \Box T : \Box = [\Box \epsilon \delta \Box \sqrt{A} X'' TM \Box] \Box + TM \langle T < \Box \sigma \Im T : \theta T + \& \Box \epsilon \delta \Box \sqrt{\Delta} \Box \Box \theta \kappa] \epsilon T$ $T \square = + < \square \sigma \Im T \square TT \Delta < \square TM \langle :: \bigoplus k * + \# \langle \& \square \square \square [\delta \square]\beta] \& \& \square + \rangle < \square T. \psi \square \{$ $" \therefore \square \sim \blacktriangledown \therefore \oplus \leq \square \quad \delta \square + \square + \sim + \equiv \theta \exists \epsilon \sigma \square \ \therefore T \sim > \bullet T \epsilon \quad | \varphi \langle T \square \& \square \ \theta \exists.$ θ

$$] \sim \forall \#] \delta = \oplus \sim \forall \#] \delta = 0 \qquad \psi [\Pi < = :. \angle 0$$

Ψ[Π<=∴∠θ™]~θ

тм |~ $\psi \Box \{ " < \Box \ \sigma \Im T \ \Box \ | \sigma \Im T \ \psi \Box \ \{ " \therefore \delta \Box \ + K \leftrightarrow \} \}$ \Box TT $\Delta < \Box$ TM $\langle :: \psi | TT^{TM} \langle | +$

 $(\# \downarrow *' + \# \land \Box \& \Box \Box \sim) \sigma \Im \checkmark.$

А	1,000	ε√]⊂ 1, 2002 6,000
В	1,250	$\Box > \delta \Box T 15,002$ 8,000
С	500	ν↓℘□ σℑΤ 1, 2002 10,750
D	2,000	&□ □ δ+□ σℑT 1, 2002 13,000
Е	250	≅ }∧ 1, 2003 15,000

 $\Psi \square \{ ":\square \square + \{ [\varepsilon TT] \sim^{TM} \langle \exists : T\varepsilon \sigma \Im \sqrt{.10}, \Psi \square \{ [\square | \Pi \sigma \Im \sqrt{.5} \# \lfloor *' + \# \langle \square \& \square \theta \sim . \end{cases} \}$ $* \downarrow (\frown \&] \ge \sigma \Psi \ K \sigma \Im T \subset \therefore T \ \psi (TT < \Box \ \therefore > \bullet T \ \exists \epsilon \sigma \Box \ \therefore T > \bullet \epsilon T \Box \ + \# \langle \oplus \le \Box \ + \& \Box \ \Box \ | \prod$ $\theta \square |\sigma = \neg \theta \square \forall \square \{ " < \square \sigma \Im T \therefore \upsilon " < \square \leftrightarrow \Im T > \bullet \Delta \theta \#] \phi \langle T + \& \square \rangle$

Section – C

III. Answer any Two of the following.

2 x 20 = 40M

$\mathbf{v} \square \square \therefore \mathbf{T}$	Н*.	S *.	□ δ□ TT	Н*.	S *.	
	σ ℑ√.	σ ℑ√.		σ ℑ√.	σ ℑ√.	
$\sigma \Im \sqrt{.10/- \Box \Pi]} \# [*']$			$\delta \odot \varnothing \sigma \Box \delta \Box T \varnothing :: T$	4,00,0	60,000	
+≡θ	5,00,0	1,00,0		00		
□ ⊣[∩{[ψ□ {″∴Τ	00	00	δ□ σℑΤ⊕≤□		1,20,0	
	2,00,0	60,000		3,00,0	00	
<i>\</i> ".θ.Υ"™□	00	30,000	$\Box TT\Delta > \bullet \delta \Box T :: T$	00	85 <i>,</i> 000	
]∪σℑΤ∩∴Τ	60,000	15,000	$\epsilon \delta \Box \checkmark \therefore T _ \therefore T' \therefore T$	75 <i>,</i> 000		
$\# \lfloor *' + \mid \Box \lor _ \therefore T' \therefore T$	-	60,000	s *.}⊄ 7,500 ψ⊡ {″	20,000		
\Box TT $\Delta < \Box$ TM $\langle :: T$	1,10,0	2,65,0	∴T	75,000	2,65,0	
	00	00		8,70,0	00	
	8,70,0			00		
	00					

31.3.2003 H $\left\{ \left[\Box \delta \mathbb{C} \right] v \Box \Box : \Box \left\{ \Upsilon ... \right\} \right\}$

 $\nu < \Box \theta | \Box \lor \delta \Box \epsilon \sqrt{\#} \Box \sigma \Im + \mathfrak{z}$

 $1. \mathbf{S} \ast . \mathbf{v} + \bot \mathbf{J} \leq] + \equiv \theta _ \therefore T' \therefore \square \mathbf{H} \ast . \oplus \leq \Box \square \equiv \subset \theta \mathbf{\psi} \rfloor$

2. H *. $\varepsilon TT \angle + \Box \lor \delta \Box \dashv \sigma \mathfrak{T} \oplus \leq \Box \not\models \sigma \mathfrak{T} \checkmark 25,000 \exists \therefore T \varepsilon > \bullet \therefore \delta \Box \sigma \mathfrak{T} \oplus \mathfrak{K}$

3.

 $\mathsf{TM} = \mathsf{H} = \{ \mathsf{I} : \mathsf{S} : \mathsf{I} \cup \sigma \mathfrak{T} \cap :: \Box :: \cap \sigma \mathfrak{T} \sqrt{.30,000} \}$

J.M.JCOLLEGE FOR WOMEN, TENALI (Autonomous)

III B.Com General Advanced Corporate Accounting Semester - VI Section – A

Time : 3Hrs.

I.

Max.Marks:70 10 x 1 = 10M

- 1. $\cup +\geq Y''^{TM} \square \exists < \int \square \theta + \nu + \phi \rangle \cong \exists T \{ f : \theta = 0 \}$
- 2. $\cup + \geq Y''^{TM} \square : \sqcup \leq \square \Delta'' :: \theta T^{TM} \sqcup : \square + \& \square$.
- 3. $\nu_{\epsilon} = \sqrt{\varepsilon} = \sqrt{\varepsilon} = \sqrt{\varepsilon}$

Answer All of the following.

- $4. | | \square \ \delta \square \ T | {}^{\mathsf{TM}} \langle \ \varepsilon \leftrightarrow \varphi \langle T \rangle \bullet \Delta \downarrow \leq \exists < \bigcap \square \ \theta \ \therefore \downarrow \leq \square \ \Delta'' \ \vdots \ \theta \ \mathsf{T} \ \mathsf{TM} \ \big\lfloor \ \vdots \ | \square \ + \& \square \ .$
- 5. $| \square \ \delta \square \ T | ^{TM} \langle \downarrow = \theta T \rangle = \therefore T \ \Xi / \downarrow [| \nu_{\downarrow} \square \ + \{ [+ > \times < (\downarrow \leftrightarrow \phi \langle \sqrt{ \therefore \theta T} \ ^{TM} \lfloor \therefore | \square \ + \& \square \ . \}$
- 6. $\angle \phi \langle T] + > \times \delta \Box \sigma \Im T \varnothing \upsilon'' \geq T \upsilon \theta > \pm H \exists T?$
- 7. $\varepsilon \leftrightarrow \phi \langle T \upsilon | "\varepsilon \theta \theta T \exists \varepsilon] + \# \langle + \& \Box]$.
- 8. $\kappa \subseteq \varepsilon \sqrt{\Box} \downarrow \leq \upsilon \int \langle \langle \neg \rangle \langle \Box \rangle \rangle = + \{ \downarrow \Rightarrow \forall \theta T \Box \sigma \Im \cap = + |\Box \lor \varepsilon T T \}$
- 9. $\forall \Box \leftrightarrow \beta \subseteq \sigma \Im + \phi (TT \downarrow \leq \neg \kappa \subseteq \varepsilon \lor \Box \downarrow \leq \langle f \rfloor \leftrightarrow \phi \langle \lor \Box T^{TM} [: | \Box + \& \Box]$

Section – B

II. Answer any Two of the following.

2 x 10 = 20M

∃εσ□ ∴Τ	σℑ√.	σℑ√.
$\Box \downarrow [\cap \{ [\psi \Box \{ " \therefore T] \} \cap] \downarrow \Box] \}$		1,64,70
&□ υ⊃+#⟨σℑΤ′		0
$\exists \varepsilon < \int \Box \Box TT\Delta < \Box TM \langle \therefore T$		60,000
$\square \geq T \square \& \square \varepsilon \leftrightarrow \varphi \langle T + (31.3.2007 \varepsilon \sigma \Im \oplus S) \rangle$	2,85,00	300
)	0	
$2007-2008 \not\models \Box \mid \geq T \Box \& \Box \in \varphi \land T+$	18,300	
$\exists < \Box \ T \longleftrightarrow^{TM} \Psi \ \delta \Box \ \sigma \Im \Box \ \Box \ \sigma \Box \ \#] \delta \longrightarrow \theta + < \Box \ T $	12,000	
$\Box \Box TT\Delta > \bullet \delta \Box T \therefore T$	150	
$\Box \ ^{TM}\langle \sigma \mathfrak{I} \ \Box \ TT\Delta > \bullet \delta \Box \ T \therefore T$	1,500	
κ⅃…σℑΤ◊□ ∴∩	1,500	
$\theta > \bullet < \Box T \Box : : \cap$	9,000	
$\exists < \Box T \leftrightarrow^{TM} \Psi \Box \forall (\in \leftarrow) \varepsilon \leftrightarrow \varphi \langle T +$	1,500	
$\exists < \Box T \leftrightarrow T \land \Psi \Box + \Box \Delta f \in \phi \land T +$	1,500	
$v < (\uparrow, \neq \sigma \geq T', \mid \Box \ \Theta T \Box \ \therefore T$	3,600	
□ σℑ∩ς□ ″Δ ΚσℑΤ⊂∴Τ	6,000	
$^{\mathrm{TM}}\langle\sigma\mathfrak{J}T angle\bullet\mathrm{T}<\Box$.	3,000	
& \Box ບ \rightarrow +# $\langle \sigma \mathfrak{I}' \Box \mid \prod \mathfrak{e} \& \Box \mid f$	6,000	
$\epsilon T < \Box \leftrightarrow T \land \sigma \mathfrak{I} + \& \Box \exists \& \downarrow + \& \Box T$		39,000
$\exists < \Box \ T \leftrightarrow^{TM} \Psi \ v \epsilon T \Box \ \downarrow \leq +$		1,500
MT≥σℑ′ ν<\Ĥ		8,550
1.04.2007 □ ↓≤σℑ σ□ □ &□ Υ″™□ ϟ⊄ □		
\cap		
	3,49,05	3,49,05
	0	0

 $\begin{array}{c|c} 12.\kappa & \text{im} & \text{im}$

™_~	εδ□ √⇒)	σℑ√.	δ□√	тм_~	#[*'+ □ ∨	σℑ√.	δ□√
	□↓		Ν		∴T		Ν
$\pi H\square$	±L→ □T3ν	1,05,0	210	\Box $\delta \Box$ + \Box σ	ε↔φ⟨√∴	2,15,0	215
1	∴T	00	230	Т 15	Т	00	240
∪ θε]	νεT□ ₊⊥±	3,45,0		$\theta \epsilon + \Box \sigma \Psi 30$	ε↔φ⟨√∴	1,50,0	225
15	∴T	00		&□ □ δ+□ σΨ	Т	00	
				1	ε↔φ⟨√∴	2,00,0	
					Т	00	
$< \left(\Box \ \sigma \mathfrak{I} \right) \not\subset (\nabla \mathfrak{I}) \neg \mathfrak{I} = \therefore \ \varepsilon \therefore' \beta \sqsubseteq - + \equiv \theta \forall \upsilon (\forall \Box \ \Box \) < \Box \ \theta \chi \sqsubseteq \ldots \Box \ \Box \le \theta T > 0 $							

 $\theta + \& \Box$, $\delta \Box + \varepsilon^{TM} \langle \Diamond \sigma \Im + \equiv \varepsilon \sigma \Im \delta \Box \sqrt{N} \delta \Box + K \leftrightarrow 240.$

Section – C

III. Answer any Two of the following.

2 x 20 = 40M

 $14. \exists < \Box T \leftrightarrow^{TM} \Psi \mu \therefore | \downarrow | \ldots \downarrow \leq \land \delta \Box | \Box ' \phi \Psi T \downarrow \leq + \Box | | * \exists T \phi \supset \& \Box \Psi \Box] | \Box \lor \delta \Box | \downarrow \pm \\ \therefore \theta T + \& \Box \varepsilon \lor] \subset 31,2008 H\Box \& \Box T \delta \Box + | > \bullet \varsigma _"+= \theta ~> \bullet T \varepsilon \exists \varepsilon \sigma \Box \therefore \theta T + \& \Box (\mu) \\ \Box | \geq T \ldots \Box \& \Box Y''^{TM} \Box () \sigma \Box \& \Box Y''^{TM} \Box (| _) \Box \downarrow \leq \sigma \Im \sigma \Box \& \Box Y''^{TM} \Box (\& \Box) \kappa \\ \subseteq < \int \Box \sigma \Im \Delta \Box \delta _ | \nu | \Box \therefore | \Box \{ \Upsilon \ldots \Box \ T^{M} \langle \phi \langle \# t \rangle \widetilde{\phi} \langle \Pi + \& \Box . \}$

&L_{∧□ ∴∩∴T	σ3√.	│ℜ₊J&□ {∧□ ∴∩∴T	σ3√.
}⊃∏□ δθΤ◊	9,000	$\psi \square \{ " \epsilon T < \int \Box \theta +$	75,00,000
υ∫□ √∃T	2,10,00	(75,000 □ ↓∫∩{∫ ψĮ	
$(\Box \ \delta\Box \ T ^{TM}\langle \ \delta\Box + \epsilon^{TM}\langle \diamond\sigma C \rangle$	0	″∴T	
}⊄ σℑ√.10,000 #_σℑT∈		□ ↓=¬↓≤¬{∫ σℑ√.10	
:.T)		#= ` θ)	30,00,000
ບ∫□ εΗ□ ∴Τ	12,18,0	$\square \sim \text{fiss}(\psi) = \{ \forall \psi \in \{ \forall \psi \in W \} \}$	2,11,000
$\beta \subseteq ' + \geq T, \phi \langle T + TM \Box : T$	00	Т 3,00,000	4,80,000
{″θΤ◊ β□ ⊆σℑ□ σΨ δ□ υ	2,04,00	□ ↓=¬↓≤¬{∫ σℑ√.10	2,10,000
$\Box \delta \omega \Box H \Box$	0	#= `]θ	
ψ $T\sigma$ TTH \Box \diamond $(\Box \Box]$ TM \langle	83,70,0	$Y''^{TM} \subset \sigma \mathfrak{I}' \oplus \mathfrak{I}$]u	9,10,000
υ∫□ √>•σℑ®+}⊄	00	≥Tℛ₊∏]∪σℑT∩	2,40,00,0
$\Box \delta \Box + \epsilon^{\mathrm{TM}} \langle \diamond \sigma \mathfrak{I} + \rangle \not \subset \# \rfloor \sigma \mathfrak{I}$		$\square > \bullet + TM \langle T I I \leq] \cup \sigma \mathfrak{I} T$	00

$\in :: T \sigma \Im \sqrt{.}$		\cap	
17,70,000)		<∫□ σℑ∴, &□ ∃&\+	22,500
>•□ ς□ ″ δ□ +□ +<.\$≤H	32,10,0	& $T \Box \phi \langle T+ TM \langle \Delta \rangle$	
רי) θL,	00]∪σℑΤ∩	49,50,000
$(\Box \ \delta \Box \ T ^{TM} \langle \ \delta \Box \ + \epsilon^{TM} \langle \diamond \sigma \Im \rangle$		&\ε∴ τψ\T+{∧]∪σ	
}⊄#JσℑT∈∴T)	3,30,00	ℑT∩	
$ \Box \Box]\Box \# \langle \sigma \Psi _ \angle + \Box \lor \therefore T$	0	$\delta \square + \equiv^{TM} \langle \psi T \rightarrow \theta TM \langle$	5,70,000
$(\Box \ \delta\Box + . \neq \#] \sigma \Im T \in :. T \sigma$		σℑT>•T<□ ∴	25,74,000
ℑ√.21,000)	3,15,00	$> \bullet^{TM} \langle \delta \Box + \epsilon^{TM} \langle \delta \sigma \Im +$	48,00,000
$\psi [\sqrt{\{"\sigma \Im T \}}" \downarrow :: T$	0	≥⊕T □>+TT3 □&+Tθ	
$(\Box \ \delta\Box + . \neq \#] \sigma \Im T \in :: T \sigma$			2,25,000
ℑ√.50,000)	4,80,00	™(≡⊂θ□ ↓≤σℑ σ□ □	1,74,75,0
$\Box > \bullet + TM \langle T \downarrow \leq] \cup \sigma \mathfrak{I} \cap \Box \mid \sharp$	0	$\& \Box Y''^{TM} \Box \Box : \cap$	00
T□ &□ T.:.T	6,25,00	σ□ ω□ □υ∫□ Τ	1,05,000
$\exists < \Box T \leftrightarrow T \Psi \downarrow = \theta T > \exists `` T$	0	$\langle \cap + \theta T + \& \Box \rho \delta \Box T \oplus $	
ϑ^{TM} :: $T, \psi^{\mathrm{TM}} H$:: T	12,00,0	$\Box \ \theta \Box \ \sigma \Im T \Delta +$	
$\left \epsilon T \sigma \mathfrak{I} \epsilon T \Box T \wedge \langle T \right \therefore T, \Box \sigma \mathfrak{I} \cap$	00	$(\delta - \emptyset \sigma \mathfrak{I} \square \delta \square T : \square$	
ς□ ″∆э		$\prod \operatorname{TM} \langle \theta Y'' \operatorname{TM} \wp)$	
$ u \int \Box \varepsilon H \Box \therefore T \qquad \sigma \Im \sqrt{2} $		$\sigma \square \mid \omega \square \dots \exists < \square T \leftrightarrow^{TN}$	
2,500		$Ψ$ υ $σ$ σℑΤ f θΤ+& \Box	22,500
$\beta \subseteq ' + \geq T \phi \langle T + TM \Box : T$		$\sigma \Im T \Delta +$	37,500
7,500		∃∃<∫□ σℑΤΔ″<□ ™⟨	15,000
$ \{ "H\square \ \Diamond \beta \square \subseteq \sigma \Im \square \ \sigma \Im T' $.:.T	
90,000	6,48,00	$\exists \Box \phi [\forall > \bullet < \Box \sigma \mathfrak{I}' \Box \delta \Theta$	
ψ (ToTTH: $\delta \delta$: $\downarrow \cap \delta$: T	0	≤Λ↔]{Ύ	
∴T 5,10,000	19,95,0	&□ β <u>⊂</u> □ ≥T′	
}"↓∴T <u>18,000</u>	00		
	76,500	&□ ∃&\+&□ T'	
δ — \Box $\mathbb{R}+\sim$ \Box $\sigma\mathfrak{I}\cap\varsigma\Box$ " Δ K	60,000	$\exists < \Box T \leftrightarrow \# \langle \Box \Leftrightarrow \downarrow [v$	
ℑT⊂∴T	22,500		
$\nu < [\uparrow], \mid \Box \ \theta T \Box \ \therefore T, \neq \sigma \ge T'$	1,50,00	MT≥σℑ′ ν<\î	
$ \Box $	0		

$\square \& \square \{ \land \square @E \}$	10,50,0		
κ⊆<∫□ σℑ∆ ΚσℑΤ⊂∴Τ	00		6,71,16,0
∃<□ T↔#⟨⊂⇔₊∫│ δ□ T+₊	25,500		00
≤+	3,52,50		
& $\Pi \Re \sigma \leq \sigma \Im' \mid \Box \otimes E, \upsilon$	0	Μ∼ Ββ⊆∴ □ σℑ∩ς□ ΄	
$\int \Box \ ^{\mathrm{TM}} \Box \leftrightarrow :: T$		$\Delta \Box \mid \Pi \varepsilon \delta \Box \checkmark \Rightarrow \Box \Downarrow$	
$B\sigma\mathfrak{J}$, $\pm *$, $\pm s\mathfrak{J} \leq \sigma\mathfrak{J} T \Delta'' \therefore \Box \mid$	1,20,00	$ \phi \langle T + TM \Box : \Box \prod \nu < l 1$	
$\prod \epsilon \& \Box f$	0	εδ□ √∴Τ	
$\exists \Box \ \phi [\forall \! > \! \bullet \! < \! \Box \ \sigma \mathfrak{I}' \Box \ \delta \oplus \! \leq \! \Lambda$	33,00,0	υ″+⊕≤□ Υ″™□ ∴□]	
↔]{[00		
$\&\Box \ \beta \subseteq \Box \geq'\Box \ \prod \varepsilon \&\Box \ f$	19,20,0		
$ \Box \ \delta\Box \ T {}^{TM} \langle \ \Box \ \delta\Box \ T :: T $	00		
$I = \theta \kappa \subseteq > \bullet T^{TM} \langle T \theta \Box \Box \Box$	40,50,0		
$\exists \exists < \int \Box \sigma \Im T \Delta > \bullet \delta \Box T :.]$	00		
$\upsilon'' + \bigoplus \leq \square \theta > \bullet < \square T \square :. \cap :$	21,00,0		
Т	00		
$\nu \Box \ \Box \ \therefore T, \nu \& \Box \ \frown \theta T \Diamond \therefore T$	10,50,0		
	00		
	6,71,16,		
	000		

- $$\begin{split} \# \downarrow \varphi \langle T \epsilon :: \delta \longrightarrow \Theta \ \ \sigma \Im T \widehat{\uparrow} \upsilon'' \geq T'(\mu) \ \big| \ \square \ \ \delta \square \ \ T \ \big| \ ^{TM} \langle \delta \square \ + \epsilon^{TM} \langle \delta \sigma \square \ \square \ \square \ \big| \ (\sigma \Im T > \bullet T) \\ < \square \ : \ \sigma \Im \sqrt{.17,25,000} \ () \ \big| \square \ \ \Theta T \square \ \ \square = \sigma \Im \oplus \le \square \ \ \cong \sigma \square \ \ \in \ge T \ \sigma \Im \sqrt{.22,80,000} \ (\delta \longrightarrow) \square \\ > \bullet +^{TM} \langle T \square \le] \cup \sigma \Im T \cap \oplus \le \square \ \ \epsilon T [\Downarrow + |\square \ \lor \ \sigma \Im \sqrt{.2,25,000} \ (\& \square \) \ \& \left[\epsilon :: |\tau \psi \mid T + \ge T \right] \\ \cup \sigma \Im T \cap \oplus \le \square \ \ \epsilon T [\Downarrow + |\square \ \lor \ \sigma \Im \sqrt{.1,20,000} \ \ \sigma \Im \sqrt{.11,94,000} \ \ \Theta T \ \delta \square \ \ \epsilon T + \cup \delta \square \ \psi \mid T \rightarrow \\ \Theta \ | \square \ \ \iff \square \ \ : + > \pm \upsilon \ \int " \exists \langle \textbf{E} \# \langle T \sub . \end{split}$$
- $\begin{aligned} \text{15. } \kappa \underline{\subseteq} \epsilon \sqrt{\Box} \, \downarrow \leq \upsilon \int '' < \int \Box \, \leftrightarrow^{\text{TM}} \langle \therefore \nu \downarrow \Box \, + \{ \left\lceil + > \times \right\rceil | \Box \, \left\rceil \downarrow \int \phi \langle T, \right\rceil | \Box \, \phi \left\lceil \sqrt{\cup} H \Box \, \therefore \theta T, \left| \Box \, \right\rceil \\ T^{\text{TM}} \langle T \therefore \theta T \, {}^{\text{TM}} \left\lfloor \therefore \left| \Box \, + \& \Box \, \right. \end{aligned} \end{aligned}$

	≥لہ∢™ [[□#	
	ε↔φ $\langle T+ \sigma \Im .$	<∫□ σℑ∴ δ□ √N
$1.4.2007 \ \theta \ \delta \square \ \sigma \Im T \oplus \le \square \ \exists :: T$	40,000	200
$2007 \ \overline{0}8 \not \Rightarrow = \theta T \Rightarrow \wp \Rightarrow \square \Downarrow$	3,10,000	220 (2007 08}⊄ δ□ >•≥T)
31.3.2004 δ□ σℑΤ⊕≤□ ∃∴Τε	50,000	230

J.M.JCOLLEGE FOR WOMEN, TENALI(Autonomous)

III B.Com General & Computers

Auditing

Semester – V

PPW:5

Objectives: i) To impart knowledge pertaining to basic concepts of Auditing

ii) To Acquaint oneself with Auditing procedure and report writing

Unit –I: Introduction to Auditing

Meaning-definition-evolution-objectives-importance.

Unit-II:Types of Audit

Based on ownership (Proprietorship, Partnership, Companies, Trusts, Cooperative Societies, Government Departments) – Based on time (Interim, Final, Continuous, Balance Sheet)- Based on objectives (Independent, Financial, Internal, Cost, Tax, Government, Secretarial).

Unit - III: Planning of Audit and Control

Auditor: Qualifications and disqualifications-Qualities-Appointment and reappointment-Remuneration-Removal-Rights-Duties-Liabilities.

Audit planning: Engagement letter- Audit programme-Audit notebook-Audit papers- Audit workbook-Audit contents- Audit markings- Internal check- Internal control- (Sales,Purchases, Fixed assets, Cash bank payroll)-Accounting controls and sampling in Audit.

Lab work: Preparation of Audit programme for an organization.

Unit –IV: Vouching

Meaning, Vouching of cash Trading transactions-Investigation, Verification and Valuation of assets and Liabilities-Difference between Vouching, Investigation, Verification and valuation. Lab work:Vouching of cash book of a local business unit

Reference Books:

- 1. Contemporary Auditing : kamal Gupta
- 2. Practical Auditing : Spicer& Pegler
- 3. Principles and Practices of Auditing : Jagadish Prakash
- 4. Principles of Auditing : Ghatalia
- 5. Business Correspondence and report Writing: Tata M. Graw Hill
- 6. Business Correspondence & Report Writing : UrmilaRai& S. M. Rai
- 7. Business Communications and Report Writing : Kalyani Publications
- 8. Auditing : N.D. Kapoor

J.M.JCOLLEGE FOR WOMEN, TENALI(Autonomous)

III B.Com General & Computers

Auditing

Semester – VI

PPW:5

Objectives: i) To impart knowledge pertaining to basic concepts of Auditing ii) To Acquaint oneself with Auditing procedure and report writing

Unit-I: Audit of Institutions

Partnership-Manufacturing and other Companies-Non trading concerns.

Unit –II: Audit Report

Contents-Preparation of Audit report-Fair report-Qualified report.

Lab Work: Collection of Model Audit Reports from Local Auditor and Preparation of Similar reports.

Unit –III:Report writing

Business Correspondence and Report writing: Basic principles-Business letters.

Unit –IV: Business Reports

Structure-Preparation of Routine reports and special reports.

Lab Work: Drafting of model business letters and Preparation of Business reports.

Reference Books:

1.	Contemporary Auditing	: kamal Gupta	
2.	Practical Auditing	: Spicer& Pegler	
3.	Principles and Practices of Auditing	: Jagadish Prakash	
4.	Principles of Auditing	: Ghatalia	
5.	Business Correspondence and report Writing: Tata M. Graw Hill		
6.	Business Correspondence& Report \	Writing : UrmilaRai& S. M. Rai	

- 7. Business Communications and Report Writing : Kalyani Publications
- 8. Auditing : N.D. Kapoor

J.M.JCOLLEGE FOR WOMEN, TENALI(Autonomous)

III B.Com General & Computers

Auditing

Semester – V

Time : 3Hrs.

Ι.

Section – A

Max.Marks:70

10 x1 = 10M

1. What are the advantages of Auditing?

Answer all of the following.

- 2. What is meant by fraud? $\psi \sqrt[]{\delta \square} \epsilon TT \nu \theta \ge H \exists T?$
- 3. What is Statutory audit? $\Xi(\delta \Box \ H \Box \ {}^{TM} \langle \Box \ \downarrow \leq \Box \ \& \Box \ (\land \nu \theta > \pm H \ \exists T?)$
- 4. What is Audit Planning? $\Box \&\Box \{\land | \Box \Delta''[\downarrow \leq \nu \theta > \pm H \exists T?$
- 5. What is routine checking? $\sigma = \{ H \square \# \downarrow \downarrow + \times \nu \theta > \pm H \exists T? \}$
- 6. What is meant by Voucher? $\zeta # \langle \sigma \Psi \nu \theta \rangle \pm H \exists T?$
- 7. What are the Financial Statements? $\Box] \emptyset \downarrow \leq \Box \psi \downarrow \sim \downarrow \leq :: T \cong \exists ?$
- 8. What is Internal Control?
 - $\Box +^{\mathrm{TM}} \langle \sigma \Im Z^{\mathrm{TM}} \langle \Box \phi \langle T + | {}^{\mathrm{TM}} \langle \Delta \nu \theta \rangle \pm H \rfloor \exists T?$
- 9. What is sampling in Auditing?

 $\Box \& \Box \{\land \theta \in T \sqrt{H} \Box \forall \theta > \pm H \exists T?$

- 10. What is meant by Contingent Liabilities?
 - $\Box > \bullet + \mathsf{TM} \Box \sqcup \leq \Box \ TT\Delta \upsilon'' < \int \Box \iff \mathsf{TM} \langle :: T \ \nu \theta > \pm H \ \exists T?$

Section – B

II. Answer any two of the following.

2 x 10 =20M

11. What is Auditing? What are types of Audits?

 $\Box \& \Box \{ \{ + > \times \nu \theta > \pm H \ \exists T? \ \Box \& \Box \geq' \} \not\subset \sigma \mathfrak{I} \sqcup \pm \therefore T \ \mathsf{TM} \ \lfloor \therefore T | \Box \lor \epsilon TT. \}$

- 12. What is Internal Check? What are features of good system of internal check? What is the position of an Audit in relation to such a system? $\nu + TM \langle \sigma \Im Z^{TM} \langle TM \langle \Box \notin \nu \theta \rangle \pm H \exists T? \langle \Box \Box : \downarrow \leq \Box \Delta'' \rangle \exists T? \epsilon T] \phi \langle TT \Box \& \Box \{ \land \delta - \emptyset \rangle \oplus TM [:: T \Box \lor \epsilon TT.$
- 13. Write about theauditor's appointment, Professional Qualifications and personal Qualifications.

```
\Box \&\Box \{\land \Box \varphi (\forall \varepsilon T \downarrow \leq \varepsilon TT, \varepsilon \Box \Leftarrow | \Box \sigma \Im \psi (T \rightarrow \theta \varepsilon T) \varphi (TT \varepsilon \leftrightarrow \downarrow [ ] > \bullet^{TM} ( \lor \sigma \Im | TM ( \therefore T \square \lor \varepsilon TT.
```

III. Answer any two of the following.

2 x 20 =40M

14. What are objectives and advantages of auditing?

 $\Box \& \Box \{ [+>\times ::= \Box \pm \longleftrightarrow :: T \mid \Box \phi [\sqrt{\cup} H \Box :: T \top M [:: T | \Box \lor \epsilon T T.$

15. What is meant by Verification and valuation? How would you verify and valuate the assets and liabilities?

 $\Box \sigma \Im \sqrt{|\Box \Delta \epsilon T]} \phi \langle TT \epsilon T \sqrt{}'' \leftrightarrow + \downarrow \leq \theta \epsilon TT \lor \theta > \pm H \exists T? \exists \exists < \int \Box \Box \delta \Box T | \therefore \theta T \lor |\Box$

- 16. What is meant by Investigation? Distinguish between Auditing and investigation? $\Xi \not\subset < \bigcap \ \theta \ \nu \theta > \pm \ H \ \exists T? \ \square \ \& \square \ \{ \ +>\times \oplus \le \square \ \Xi \not\subset < \bigcap \ \theta \oplus \le \square \ e \mathfrak{T} \rtimes \blacksquare \ \vdots \ \mathbb{T}^{\mathsf{M}} \ \& \square \ \}$ $\exists ?$

J.M.JCOLLEGE FOR WOMEN, TENALI(Autonomous)

III B.Com General & Computers

Auditing

Semester – VI

Max.Marks:70

Section – A

I. Answer all of the following.

- 2. What are the types of Capitals? $\epsilon T \sqrt{...} < \bigcap H \square ... \neq \Box \sigma \Im \downarrow \pm ... T \cong \exists ?$
- 3. What is Debenture? & $\square + \# \langle \sigma \Im T \nu \theta \rangle \pm H \exists T?$
- 4. What is Statutory report? $\Xi(\delta \Box H \Box \mathsf{TM} \langle \Box \downarrow \leq \Box \psi \rfloor \sim \downarrow \leq \nu \theta > \pm H \exists T?$
- 5. What are the types of Audit report? $\Box \&\Box \{\land]\beta J \sigma \Im T ... \} \not\subset \sigma \Im \sqcup \pm :: T H \exists T?$
- 6. What is a Letter? $\langle K \nu \theta > \pm H \exists T ?$
- 7. What is a enquiry Letter? $\exists \# \Box \ \sigma \Im \Delta \nu \theta > \pm H \ \exists T?$
- 8. What is a report? $\beta \sigma \Im T \dots \nu \theta > \pm H \exists T?$
- 10. Mention the types of Business Letter? $\psi \Box \leftrightarrow \beta \subset \sigma \mathfrak{F} \rangle K \therefore \sigma \mathfrak{F} \sqcup \pm \therefore T \cong \exists ?$

Section - B

II. Answer any two of the following.

2 x 10 =20M

11. What points should an Auditor keep in mind while auditing any two non trading concerns?

Time : 3Hrs.

10 x1 = 10M

- 12. What is a report? What are types of reports? $\beta \sigma T \dots \nu \theta \ge H \exists T? \beta \sigma T \dots \Rightarrow \forall \sigma T \dots \Rightarrow \forall \sigma T \dots \Rightarrow \exists T \cong \exists T = \exists T =$
- 13. Explain special points what would require the attention Auditor while conducting audit of partnership.

 $\begin{array}{c} \upsilon \int "> \bullet \kappa \underline{\frown} \wedge \varepsilon T \leftrightarrow \delta \Box + \delta \Box & \varnothing & \Box & \delta \geq |\Box \lor \& \Box T \geq \eth \& \to \varepsilon T \Box + \# \langle \varepsilon \therefore \delta & - \Theta & \exists \omega \Box & \varphi \langle \sqrt{ \therefore T }. & \end{array}$

Section - C

III. Answer any two of the following.

2 x 20 =40M

- 14. What is audit report? What are the contents of Audit report?
 - $\Box \& \Box \{\land]\beta \ \ \ \ \ \forall \theta > \pm H \ \ \ \exists T? \ \Box \& \Box \{\land \sigma \Im T\beta \ \ \ \sigma \Im T... \} \not \subset \Box \lor + \Xi (::T \cong \exists ?)$
- 15. What are the parts of a Business Letter?

 $\psi \Box \leftrightarrow \beta \subseteq \sigma \mathfrak{I} \rangle K \big\} \not\subset \Box \quad \epsilon TTK \leftrightarrow \upsilon \big(">\pm \big\} \big\} \exists ?$

16. What are the preliminaries should be taken by the auditor before commencing the Audit of Company?

 $\begin{array}{c} \downarrow \leq + \Box \mid \mid \Box \& \Box \mid A \mid \beta \subseteq \sigma \mathfrak{I} + \upsilon \mid \Box \mid A \geq \Box \lor A \Box \mid T \sqcup \& \Box \geq \sigma \Psi \rho \delta \Box \mid T \downarrow \wp H \rfloor \mid \beta \subseteq < \\ f \Box \exists T \downarrow \leq \# \langle \sigma \mathfrak{I} \leftrightarrow \therefore T \cong \exists ? \end{array}$

J.M.JCOLLEGE FOR WOMEN, TENALI(Autonomous)

III B.Com General & Computers

Business Law

Semester – V

PPW:5

Objective:To make the students learn the basics of the Business laws and apply them in real life situations.

Unit – I: Contract Act:

Agreement and Contract: Definition and meaning, Essential of a valid contract, types of Contracts.

Offer and Acceptance: Definition, Essential of a valid offer and acceptance, communication and revocation of offer and acceptance.

Unit –II: Consideration:

Definition and importance- Essentials of valid consideration- the Doctrines of 'Stanger to Contract' and No Consideration-No Contract'- Capacity to contract- special rules regarding minor's agreements.

Consent: Free Consent-Flaw in consent: Coercion- Undue influence- Fraud- Misrepresentation and Mistake.

Unit – III: Legality of Contract:

Legality of object and consideration; illegal and immoral agreements, agreements opposed to public policy.

Agreements expressly declared to be void- wagering agreements and contingent contracts.
Unit – IV: Discharge of Contract

Discharge of a contract- various modes of discharge of a contract, performance of contracts. Breach of a contract- types- remedies for breach of a contract.

Unit – V: Sale of Goods Act:

Contract of sale: Definition- features- definition of the term goods- types of good- rules of transfer of property in goods- differences between sale and agreement to sell. Rights of an unpaid seller.

Conditions and warranties- meaning and distinction- express and implied conditions and warranties- sale by non-owners- auction sale.

Suggested Books:

Kapoor ND: MercentileLaw,Sultan Chand

Kapoor ND: Company Law, Sultan Chand

Balachandran V: Business Law, Tata

Tulsian: Mercantile Law, Tata

Tulsian: Business Law, Tata

Gogna: A Text Books of Business and Industrial Law, S.Chand

Gogna: A Text Book of Mercantile Law, S.Chand

Gogan: A Text Book of Company Law, S.Chand

Pillai Bhagavathi: Business Law, S.Chand

J.M.JCOLLEGE FOR WOMEN, TENALI(Autonomous)

III B.Com General & Computers

Business Law

Semester – VI

PPW:5

Objective: To make the students learn the basics of the Business laws and apply them in real life situations.

Unit –I: Consumer Protection Act and Intellectual Property Rights

Definitions of the terms consumer, unfair trade practices, restrictive trade practices and complainant-rights of consumers-consumer protection councils-consumerredressal agencies-penalties for violation.

Unit – II: Intellectual Property Rights

Intellectual property Rights: Meaning-Need and Objectives-Meaning of the terms industrial property, literary property, copy right, patents, trademarks, trade names, trade secrets, industrial designs, geographical indications. Information technology Act, 2000: aims and objectives, a brief overview of the Act.

Unit –III: Company Law

Doctrine of ultra vires and its effects-doctrine of constructive notice-doctrine of indoor management-exceptions.

Unit – IV: Management of companies

Management of companies-directors-qualifications-disqualifications-appointment-removalrights and duties-company meetings and resolutions-appointment of a company secretary.

Unit – V:Winding up of companies

Winding up of companies-various modes-compulsory winding up-powers and duties of official liquidators-members and reditors voluntary winding up-winding up subject to the supervision of the court-dissolution.

Suggested Books:

Kapoor ND: MercentileLaw,Sultan Chand

Kapoor ND: Company Law, Sultan Chand

Balachandran V: Business Law, Tata

Tulsian: Mercantile Law, Tata

Tulsian: Business Law, Tata

Gogna: A Text Books of Business and Industrial Law, S.Chand

Gogna: A Text Book of Mercantile Law, S.Chand

Gogan: A Text Book of Company Law, S.Chand

Pillai Bhagavathi: Business Law, S.Chand

J.M.JCOLLEGE FOR WOMEN, TENALI(Autonomous)

III B.Com General & Computers

Business Law

Semester – VI

Time : 3Hrs.

Max.Marks:70

 $10 \times 1 = 10M$

Section – A

I. Answer all of the following.

1. Define consumer.

 $\exists \Box \ \phi (\forall > \bullet < \Box \ \sigma \Im T \& \Box \ \Box \ \sigma \Im \cap = + \Box \ \lor \varepsilon T T?$

- 2. Write about Rights of consumers? $\exists \Box \ \phi [\sqrt{>} \bullet < \Box \ \sigma \Im T \Box \ \varsigma \Box \ " \oplus \le \Box \ \neg \therefore \theta T > \bullet T] + \equiv | \psi \Box \ \phi \langle TT \varepsilon TT ?$
- 3. What are the Trade secrets. $\psi \square \leftrightarrow \beta \subseteq \mathfrak{F} \mathfrak{S} \mathfrak{S} \square " \mathfrak{S} \square \leftrightarrow \mathfrak{E} TT : \mathfrak{H} \square \square \square \square \square \square \square \square$
- 4. What is the object of the Information TechnologyAct 2000?

- 5. Who is Director? & $\[\Pi \Re \sigma \dashv \leq ... \sigma \Im T \nu \theta > \pm \cong \epsilon \sigma \Im T ?$
- 6. Mention the qualifications of director? $\& \left| \prod \Re \sigma \downarrow \leq ... \sigma \Im' \nu \sigma \Im \right| {}^{TM} \langle ... \theta T {}^{TM} \left| ... \mid \Box + \& \Box \right| ?$
- 7. Mention the types of meetings. $\downarrow \leq +\Box \mid \mid \delta \Box \ \epsilon \sqrt{\psi} \exists \Xi / \epsilon TT :: \Theta T \ ^{TM} \lfloor : : \mid \Box + \& \Box ?$
- 8. What is the meaning of winding up of a company? $\downarrow \leq +\Box \mid \mid \mid \Box \mid \mid \delta \Box \mid \epsilon \sqrt{\mid - \mid \mid} \quad v\theta > \pm \cong \exists T?$
- 9. Define services under consumer protection Act1986? $\exists \Box \ \phi [\forall > \bullet < \Box \ \sigma \mathfrak{I}' \ \sigma \mathfrak{I} \sqcup \leq \Box \ \Delta \# \langle \geq ... \epsilon TT \ 1986] \downarrow [+ < \Box \ \Box \ \delta \epsilon \therefore \theta T \ \Box \ \sigma \mathfrak{I} \frown \equiv + |\Box \ \lor \epsilon TT?$
- 10. What is District forum?
 - $\Box \ \big| \forall \beta \Box \ \big| \sigma \Im \epsilon TT > \bullet T] + \equiv \big| \psi \Box \ \phi \langle TT \epsilon TT?$

Section – B

II. Answer any two of the following.

2 x 10 = 20M

 $2 \times 20 = 40M$

11. Write about Information Technology Act 2000?

 $\delta \square \varepsilon \sqrt{\#} \square \sigma \mathfrak{T} \# \geq \ldots \varepsilon TT \ 2000 > \bullet T] + \equiv | \psi \square \phi \langle TT \varepsilon TT \rangle$

- 13. Who is Director? What is the Process for Appointment and removal of Directors? $\& \left(\prod \Re \sigma \downarrow \leq \dots \sigma \Im T \ \nu \theta \right) \pm \cong \epsilon \sigma \Im T? \& \left(\prod \Re \sigma \downarrow \leq \dots \sigma \Im' \oplus \leq \square \ \delta \square + \square + \sim + \equiv \theta \square \ \phi \langle \sqrt{\epsilon} T \downarrow \leq \epsilon TT, \ T^{M} = \therefore \angle + |\square \ \lor \square \ = + < \int \square \ \theta \therefore T \ | \ \psi \square \ \phi \langle TT \epsilon TT?$

Section - C

III. Answer any two of the following.

- 14. Who is consumer? What is the redressal Agencies for settlement of industrial disputes? $\exists \Box \ \phi \lfloor \sqrt{>} \bullet < \Box \ \sigma \Im T \& \Box \ T \ v \theta > \pm \cong \epsilon \sigma \Im T? \ \exists \Box \ \phi \lfloor \sqrt{>} \bullet < \Box \ \sigma \Im' \ \epsilon T T \& \Box \ + \# \lfloor \therefore \ \Box \ \epsilon \Box \ \leftarrow \ \mid \exists \psi \Box \ < \Box \ \mid \Box \] \chi \subseteq \neg \sigma \Im \ \phi \langle T + \mid {}^{TM} \Box \ + > \bullet \epsilon T T > \bullet T] + \equiv \exists \epsilon] + \# \langle T \epsilon T T?$
- 15. Explain Doctrine of ultra vires and its exceptions?

- $\begin{array}{l} \nu \sim \int_{\bullet} \pm \sigma \Box \quad \rho^{\text{TM}} \langle \quad \delta \longrightarrow \Box \quad \uparrow \uparrow \uparrow^{\text{TM}} \langle \epsilon TT \quad \nu \theta \rangle \pm H \ \exists T? \ \exists T \theta \varsigma \Box \quad \forall \sigma TT + |\Box \quad \vee \therefore \forall m \ \text{set} \quad \exists \epsilon] \\ + \# \langle T \epsilon TT? \end{array}$
- 16. What is meant by Winding up of a company? Explain the procedure for Winding up by court?

 $\downarrow \leq + \Box \mid \mid \Box \mid \exists \delta \Box \in \forall \vdash \forall \theta > \pm H \exists T? \downarrow \& \sigma \Im Tf \mid \Box \sigma \Im \leftrightarrow \psi \downarrow \downarrow \leq \Box \Delta \not \not \subset |\Box \mid \exists \delta \Box \in \forall \vdash \Box \mid \forall \theta > \bullet T] + \equiv \exists \varepsilon] + # \langle T\varepsilon TT?$

J.M.JCOLLEGE FOR WOMEN, TENALI(Autonomous)

III B.Com General & Computers Business Law Semester – V

Time: 3Hrs.

Section – A

 $10 \times 1 = 10M$

I. Answer all of the following.

1. Define Contract?

 $\downarrow \pm + \mid \{ " \oplus \leq \square \dots \oplus T \square \sigma \mathfrak{I} \cap = + \mid \square \lor \mathfrak{T} \mathsf{T}$

- 2. Define offer?
 - $|\Box \leftarrow \beta \leq < \Box \theta \Box \sigma \mathfrak{I} \cap = + \Box \lor \epsilon TT?$
- 3. Define Consideration? $|\Box \leftarrow \Box \Box \therefore \epsilon TT\theta T \Box \sigma \Im \cap = + \Box \lor \epsilon TT?$
- 4. What is true Consent? $\Box T \sim \widehat{\Pi} \Box \Pi \sigma \Im \cap A \leq \psi (T \rightarrow \theta \delta \Box \epsilon T \Box \leftarrow v \theta > \pm H \exists T?$
- 5. Define Discharge of Contract? $\downarrow \pm + | \{ " \oplus \leq \square \dots \upsilon " < \square \leftrightarrow^{TM} \langle \exists \psi [\sqrt{\#} \langle \theta \epsilon TT \square \sigma \mathfrak{I} \cap \equiv + | \square \lor \epsilon TT ?] \}$
- 6. What is meant by breach of contract? $\downarrow \pm + | \{ " \oplus \le \square \dots \upsilon (\square +> \bullet \varepsilon TT \lor + \phi \rangle \cong \exists T \{ (? \} \}$

7. What is legality of object? $H \Box \leftrightarrow \varphi \langle \sqrt{TM} \langle \Box \downarrow \leq \psi [T \rightarrow \theta \Box <] \varnothing \Xi / \leftrightarrow \epsilon TT \nu \theta > \pm H] \exists T?$

- 9. Define contract of Sale? $v \in T \quad \downarrow \leq \in TT \quad \downarrow \pm + \mid \{ " \oplus \leq \square : \theta T \mid \sigma \mathfrak{I} \cap \equiv + \mid \square \lor \in TT \}$
- 10. What is the hire purchase agreement? $v < [\uparrow \downarrow = \theta T > \omega : T v] \angle \psi [T + \ge T > \bullet T] + \equiv |\psi \Box \phi \langle TT \varepsilon TT \rangle$

Section - B

II. Answer any two of the following.

2 x 10 = 20M

11. What is offer? Explain the essentials of a valid offer.

$$\begin{split} &|\Box \Leftarrow \beta \underline{\subseteq} < \Box \ \theta \theta T \ \nu + \phi \rangle \cong \exists T \{? \ | \downarrow \leq \epsilon T \Box \ < \Box \ \Uparrow \psi \ | T \underline{\rightarrow} \theta \ |^{\mathbb{M}} \Box \ \beta \underline{\subseteq} < \Box \ \theta \oplus \leq \Box \ \Box \ + \& \Box \\ &\epsilon \therefore \delta \underline{-} \theta \ \therefore \downarrow \leq \Box \ \Delta'' \therefore T \cong \exists T \{ \ (? \ \exists \epsilon] + \# \langle T \epsilon T T. \end{split}$$

12. What is capacity of contract? Explain the Special rules relating to Minors agreement? $\beta \sqsubseteq \downarrow \dots \therefore \nu \sigma \mathfrak{I} \mid ^{TM} \langle \nu \theta \rangle \pm H \downarrow \exists T? \psi \mid T \rightarrow \theta \sigma \mathfrak{I}' \oplus \leq \square \quad \delta \square + \square + \sim \uparrow + \equiv \theta \mid \square \quad ^{TM} \langle \leftrightarrow \downarrow \downarrow \rangle \leq \square \quad \square \quad + < \int \square \quad \theta \therefore T \quad \exists \epsilon] + \# \langle + \& \square \ ?$ 13. Write aboutlegality of object? And Explain Illegal and Immoral agreements.

 $\begin{array}{l} H \Box \leftrightarrow \varphi \langle \sqrt{TM} \langle \Box \downarrow \leq \psi \backslash T \rightarrow \theta \Box \rangle \langle \Box \rangle \Xi / \varepsilon TT \therefore \Box \leq \Box \Delta'' \therefore \theta T \ ^TM \backslash \Box \vert \Box \rangle + \& \Box ? \ \# \langle \geq \ldots \Box \rangle \\ < \Box \uparrow + \Box \pm \Box \ \varepsilon T] \varphi \langle TT \lor H \backslash \Pi \Leftarrow \Box \leq \lor \rangle / \angle \psi \backslash T + \geq' \theta T, \ \psi \Box \ \{ \left[\ \varepsilon T < \Box \leftrightarrow > \bullet \therefore \ ^TM \rfloor \& \Box \right] \\ \therefore \theta T \ ^TM \backslash \Box \vert \Box \rangle + \& \Box ? \end{array}$

Section - C

III. Answer any two of the following.

2 x 20 = 40M

- 14. Write any two definitions of contract? What are the essentials of a valid contract? $\downarrow \pm + | \{ " \oplus \leq \Box \dots \Box \sigma \mathfrak{T} \cap \# \langle \theta \epsilon TT \therefore T \Re \sigma + \& \Box T | \psi \Box \phi \langle TT \epsilon TT? \downarrow \pm + | \{ " \oplus \leq \Box \dots \Box \epsilon \Xi \downarrow \leftrightarrow \downarrow \pm \therefore T \exists \epsilon] + \# \langle T \epsilon TT? \rangle$
- 15. What is Discharge of contract? Write about the Various modes of Discharge of contract? $\downarrow \pm + | \{ " \oplus \leq \Box \ ... \ \upsilon " < \Box \ \leftrightarrow^{TM} \Box \ \exists \psi [\sqrt{\#} \langle \theta \epsilon TT \ \nu \theta > \pm H \rfloor \exists T? \ \exists \exists < [\sigma \mathfrak{T}_{\downarrow} \pm \} \supset [] \theta$ $\upsilon " < \Box \ \leftrightarrow^{TM} \Box \ \exists \psi [\sqrt{\#} \langle \theta \epsilon TT \ | \Box \ < \Box \ \uparrow^{TM} \langle T \therefore \theta T \ | \psi \Box \ \phi \langle TT \epsilon TT.$
- 16. Who is an unpaid seller? Explain the Rights of an unpaid seller?

$$\begin{split} \#\lfloor *' + \mid \Box \lor \cup \sigma \mathfrak{T} T \flat \Box \lor c T \Box \downarrow \leq c T T < \Box \sigma \mathfrak{T} \lor \theta \flat \pm \cong c \sigma \mathfrak{T} ? \lor^{TM} \langle \Box \downarrow \mid > \bullet \therefore \varsigma \Box " \\ \oplus \leq \Box \neg \therefore \theta T \exists c] + \# \langle + \& \Box ? \end{split}$$

J.M.JCOLLEGE FOR WOMEN, TENALI(Autonomous)

III B.Com General Management Accounting Semester – V Elective – II

PPW:5

Unit – I: Introduction

Definition, scope, objective of management Accounting - Management Accounting Vs. Financial Accounting and Cost Accounting. Installation of Management Accounting system- Role of Management Accounting – Controller functions – Management Information System (Theory only)

Unit –II: Financial Statement Analysis

Meaning, types, use and limitations of financial statements. Meaning, process and techniques of analysis of financial statements – comparative, common size statements and trend analysis (including problems)

Lab: using Excel/ Accounting packages computation of problems on various techniques of financial statements analysis.

Unit –III:Ratio Analysis

Meaning, Classification, advantages and limitations of ratio analysis. Computation and interpretation of accounting ratios: liquidity, profitability, activity and solvency ratios(including problems).

Lab: using Excel/ Accounting packages computation of problems on Ratio Analysis

Suggested readings:

- 1. Introduction to Management Accounting : Charles t, Horn GaxyL.Sundem
- 2. Tools an Technique of Management Accounting: N.Vinayakam
- 3. Management Accounting: S.P.Gupta
- 4. Management Accounting: Manmohan&Goyal
- 5. Management Accounting: V.Krishna Kumar
- 6. Practical problems in Management Accounting: Dr.Kulsreshtha and gupta
- 7. Management Accounting: J.R.Monga&M.Prabhakar Reddy
- 8. Management Accountancy: H.Premraja, Srihamsarala
- 9. Management Accountancy: SudhindraBhat
- 10. Management Accounting: Bhattacharya
- 11. Management Accounting: Sharma ShashiK.Gupta

J.M.JCOLLEGE FOR WOMEN, TENALI(Autonomous)

III B.Com General

Management Accounting

Semester – VI

Elective – II

PPW:5

Unit – I: Funds Flow Analysis

Concepts of fund and fund flow – Preparation of funds flow statement. Uses and limitations of funds flow.

Lab: using Excel/Accounting packages computation of problems on fund flow statements.

Unit –II: Cash Flow Analysis

Concepts of cash and cash flow – preparation of cash flow statement as per Accounting Standard No.3- Uses and limitations of cash flow analysis (including problems)

Lab: using Excel/Accounting packages computation of problems on Cash Flow statements.

Unit – III: Capital Budgeting

Meaning and importance of capital budgeting- process of capital budgeting- Methods of capital budgeting: Traditional and time – adjustment methods (including problems).

Suggested readings:

- 1. Introduction to Management Accounting : Charles t, Horn GaxyL.Sundem
- 2. Tools an Technique of Management Accounting: N.Vinayakam
- 3. Management Accounting: S.P.Gupta
- 4. Management Accounting: Manmohan&Goyal
- 5. Management Accounting: V.Krishna Kumar
- 6. Practical problems in Management Accounting: Dr.Kulsreshtha and gupta
- 7. Management Accounting: J.R.Monga&M.Prabhakar Reddy
- 8. Management Accountancy: H.Premraja, Srihamsarala
- 9. Management Accountancy: SudhindraBhat
- 10. Management Accounting: Bhattacharya
- 11. Management Accounting: Sharma ShashiK.Gupta

J.M.JCOLLEGE FOR WOMEN, TENALI(Autonomous)

III B.Com General

Management Accounting

Semester – VI

Elective - II

Time : 3Hrs.

Section – A

Max.Marks:70

I. Answer all of the following.

10 x 1 = 10M

- 1. $\varepsilon TT := \langle \Box \theta \Box \& \Box \diamond \{ + > v\theta > \pm H \exists T ?$
- 2. $\varepsilon TT :: < \int \Box \ \theta \ \Box \ \& \downarrow \diamond \{ f \to X \exists < f \Box \ | \Box \ < \Box \ \Uparrow T \land \theta T \ \Box \ d \Box \ T \in \varepsilon TT.$
- 3. $\Box \sigma \mathfrak{I} \cap \varsigma \Box$ " $\Delta \varepsilon T \sqrt{..} < \int \Box \theta + v \theta > \pm H \exists T$?
- 4. $| \square \delta \square T | ^{TM} \langle \square \delta \square T | :: T \nu \theta > \pm H] \exists T?$
- 5. $| \Box \delta \Box T | \mathsf{TM} \langle \nu | \Box \Box : \oplus \leq \Box \Box < \Box \varsigma \Box "\sigma \Im \Delta : T | \psi \Box \phi \langle TT \varepsilon TT.$

- 6. $v \leftarrow \mathsf{TM} \mid * \mathfrak{R} \sqcup \prod \theta \in \mathsf{T} \lor :: < \mathsf{I} \sqcup \theta \sqcup \& \mid \diamond \{ \mid +> \diamond \supset \sqcup \mid \Box \mid \exists \simeq \sim ?$
- 7. $\theta > \bullet < \Box T \mid \Box \psi \Box \varsigma \Box " \Box \psi \downarrow \sim \downarrow \le \nu \theta > \pm H \exists T?$
- 8. $\theta > \bullet < \Box T \varepsilon T \sqrt{...} < \int \Box \sigma \Box ... T \cong \exists ?$
- 9. $\Box \sim \int v\theta > \pm H \exists T?$

T.

Section - B

II. Answer any two of the following.

2 x 10 = 20M

 $11. \sim \mathbf{T} \mathbf{E} \square \delta \square | \mathbf{v} \square \square \therefore | \square \{\Upsilon ... : \Theta \mathbf{T} + \& \square \mathsf{GF} \mathfrak{T} \Delta \mathbf{E} \mathbf{T} \sqrt{..} < \mathsf{I} \square \Theta + \} \not\subset \mathbf{E} \#] \subset \mathbf{E}$ $\sqrt{\sigma} \mathfrak{T} \mathbf{E} \therefore \Theta \mathbf{T} \downarrow \leq \Theta \mathbf{T} \mathbf{F} = \mathbf{H} \square \psi] \sim \mathbf{I} \leq \mathsf{TM} \langle \varphi \langle \sqrt{\sigma} \mathfrak{T} \mathsf{T} \#] \varphi \langle \mathbf{T} + \& \square$

$\mathbf{v} \Box \Box \therefore \mathbf{T}$	2008	2009	□ δ□ T .:T	2008	2009
$\epsilon T < \int \Box \theta +$	3,00,000	3,75,000	$\phi \langle T + TM \Box :: T$	70,000	1,00,00
\Box TT $\Delta < \Box$ TM \langle	1,06,000	70,000	δ□ σℑΤ⊕≤□	1,21,000	0
∴T	14,000	31,000	\Box TT Δ >• δ \Box T	1,81,000	1,36,00
יט (״ Y״™			∴T	48,000	0
			θ>●<□ T		1,70,00
					0
	4,20,000	4,76,000		4,20,000	70,000
					4,76,00
					0

12. ~>•TE $\exists \varepsilon \sigma \Box$ \therefore $\theta T + \& \Box$ $\theta > • < \Box$ T $\mid \delta \Box$ $\varepsilon + \Leftarrow \Box$ $\psi \downarrow \sim \downarrow \leq \theta T$ TM $\langle \phi \langle \sqrt{\sigma \Im T} \# \downarrow \phi \langle TT \varepsilon T \rangle$

$\mathbf{v} \square \square \therefore \mathbf{T}$	2006	2007	□ δ□ T .:T	2006	2007
εT√∴<∫□ θ+	2,00,000	2,50,000	θ>•<□ T	30,000	47,000
$\Box TT\Delta < \Box TM \langle :: T$	70,000	45,000	\Box TT Δ >• $\delta \Box$ T	1,20,000	1,15,00
}″υ ∫″ θχ⊆…∴	10,000	23,000	∴T	80,000	0
Y''^{TM}			δ□ σℑΤ⊕≤□	50,000	90,000
			υ∫□√∃T		66,000
	2,80,000	3,18,000		2,80,000	

		3,18,00
		0

 $\begin{array}{l} \text{13. } \epsilon T \sqrt{...} < \int \Box \ \theta \ \Box \ \& \ \downarrow \blacklozenge \ \{ \ +>\times \nu \theta > \pm \ H \ \exists T? < \Box \ \Box \ | \ \beta \subseteq \epsilon T T K \leftrightarrow \vartheta T \ \exists \epsilon] + \equiv \epsilon T \sqrt{...} \\ < \int \Box \ \theta \ \Box \ \& \ \downarrow \blacklozenge \ \{ \land \theta T \ | \ \psi \Box \ \phi \ T T \epsilon T T. \end{array}$

Section - C

III. Answer any two of the following.

2 x 20 = 40M

 $14. \Box \mid \downarrow \downarrow \uparrow \leftarrow \Box \equiv \subset \theta \mid \beta \subseteq X \supset \oplus \leq \Box \dots \mu \epsilon T \rbrack \varphi \langle TT \mid \beta \subseteq X \supset \oplus \leq \Box \dots _ \therefore \delta \Box \epsilon \sqrt{\#} \Box \sigma \mathfrak{I} + \Box < \uparrow \Box \sigma \mathfrak{I} + > \pm \delta \Box > \bullet \geq T \sigma \Box \Box \& \Box \neq \sigma \geq T \theta T \downarrow \leq \theta T > = \theta T \epsilon T T.$

□ ≥T…□ &□	σ3√.20,000	σℑ√.30,000
v+#⟨H□ ϑ∃™< ↓±∴+	4 δ□+ε™⟨◊σ□ ∴Τ	5 δ□ +ε™⟨◊σ□ ∴΄
$\delta\Box + \epsilon^{\mathrm{TM}} \langle \diamond \sigma \Box :: T$	∣β⊆Χ⊃⊕≤□ … μ	β <u>_</u> X⊃⊕≤□
1	2,000	3,000
2	1,500	3,000
3	1,500	2,000
4	1,000	1,000
5	_	1,000
	6,000	10,000

 $\Box \downarrow \leq \psi \rfloor \Rightarrow / \nu \epsilon \delta \Box \sigma \Im \psi [T \rightarrow \theta \sigma \Box \Box \& \Box \neq \sigma \geq T 12\% \nu \sigma T T^{\mathsf{TM}}] \cong | \beta \subseteq X \supset \oplus \leq \Box \dots$ $\theta T \mu \theta T \Box \downarrow \wp \psi \Box *?$

 $15. \sim > \bullet T \varepsilon \square \delta \longrightarrow | \nu | \square \square \therefore | \square \{ \left(\dots \square 1.1.200062.2006 \, \mu, _ \because \oplus \le \square \delta \square + \square + \sim + \equiv \theta \\ \exists.$

$ \mathbf{v} $ \square \therefore \mathbf{T}	1.1.2006	31.12.20	$\Box \delta \Box T :: T$	1.1.200	31.12.2
		06		6	006
\Box TT $\Delta < \Box$ TM $\langle :: T$	40,000	40,000	θ>•<□ T	10,000	7,000
$\mu \upsilon \int \sigma \Im \leftrightarrow \theta T + \& \Box$	25,000	_	\Box TT $\Delta > \bullet \delta \Box$	30,000	50,000
$\nu \square \square \therefore T$	40,000	50,000	T ∴ T	35,000	25,000
$\upsilon'' + \oplus \leq \Box \theta T + \& \Box \rangle_{\varphi}$	1,25,000	1,53,000	$\delta \square \sigma \mathfrak{T} \oplus \leq \square$	80,000	55,000
θΤ			$\phi\langle T + \mid {}^{_{TM}}\Box \ : .$	40,000	50,000

εT√∴<∫□ θ+			Т	35,000	60,000
			υ∫□√∃T		
			υ∫□ εH□ ∴1		
	2,30,000	2,47,000		2,30,00	2,47,00
				0	0

$$\begin{split} \delta & = +\epsilon^{TM} \langle \diamond \sigma \mathfrak{T} + \rangle \not\subset \sigma \mathfrak{T} \sqrt{10,000} \therefore T \text{ K} \downarrow < \Box T \# \Box \ \delta \ \phi \langle T + | \ ^{TM} \Box \ \Box \ (\delta \Box \ + \equiv^{TM} \langle \ ^{TM} \langle \sigma \mathfrak{T} \rangle \mathbf{T} \rangle \mathbf{T} \rangle \mathbf{T} \\ \mathfrak{T} > \bullet T < \Box \ \therefore \ \mathfrak{3,000} \rangle \ \sigma \mathfrak{T} \sqrt{5,000} \therefore \mathfrak{G} \leq \Box \ v \exists T \Box \ H \Box \ \sigma \mathfrak{T} T. \ ^{TM} \langle \sigma \mathfrak{T} T > \bullet T < \Box \ \therefore \ \cong \sigma \Box \ \epsilon \\ \geq T \ \Box \ \phi \langle T + | \ ^{TM} \langle + \Box \ | \prod \ 1.1.2006 \ H \Box \ \& \Box \ T \ \sigma \mathfrak{T} \sqrt{.25,000} \ \epsilon T] \phi \langle TT \ \mathfrak{31.12.2006} \ H \Box \\ \& \Box \ T \ \sigma \mathfrak{T} \sqrt{.40,000} \ \Box \ \Theta \Box \ \sim. \end{split}$$

 $\begin{array}{l} 2006 \not \not \subset \sigma \mathfrak{I} \sqrt{.45,000} \therefore T \Box \downarrow \leq \sigma \mathfrak{I} \not "\upsilon f \Box + \epsilon \equiv \subset +\sim. \Box |\Pi \exists \epsilon \sigma \Box \therefore \mathsf{Im} \wp \theta \geq \bullet < \Box T \\ |\Box \psi \Box \varsigma \Box "\Box \psi \rfloor \sim \downarrow \leq \theta T \mathsf{Im} \langle \varphi \langle \sqrt{\sigma \mathfrak{I}} T \# \rfloor \varphi \langle \mathsf{TT} \epsilon \mathsf{TT}. \end{array}$

16. ~>●Τε □ ≡⊂θΧ

$\nu \square \square \therefore T$	2005	2006	$\Box \delta \Box T :: T$	2005	2006
$\psi \Box \{ " \epsilon T < f \Box \}$	1,00,00	1,25,000	υ∫□ √∃T	1,00,000	95,000
+	0	30,000	β ⊆ ′+≥T	75,000	84,500
κ⊆<∫□ σℑΔ]∪σ	25,000	15,300	δ□ σℑΤ⊕≤□	50,000	37,000
ℑT∩	15,250	20,000	\Box TT Δ >• $\delta \Box$ T	40,000	32,100
}″υ∫″ θχ⊆∴	35,000	47,600	∴T	250	300
Y''^{TM}	75,000	17,500	$\theta > \bullet < \Box$ T	_	6,500
$\upsilon'' \leftrightarrow + \oplus \leq \Box \not \subset \theta T$	15,000		>●T&□ ∃}∧		
$\Box TT\Delta < \Box TM \langle :: T$					
$ \Box \ \theta T \in :: \oplus \le \Box \cong \sigma$		2,55,400		2,65,250	2,55,40
□ ∈≥T	2,65,25				0
	0				

 $\nu < \Box \theta | \Box \lor \delta \Box \epsilon \sqrt{\#} \Box \sigma \Im + \vartheta$

 $\mu. \# \downarrow *' + \equiv \theta \& \Box \exists \& \downarrow + \& \Box T' \sigma \Im \sqrt{.11,500}$

 $_: \beta \subseteq' + \ge T \Box \mid \prod \sigma \mathfrak{I} < \Box T \Uparrow \# \bot \delta \longrightarrow \theta \And \langle \sigma \mathfrak{I} T > \bullet T < \Box \therefore \sigma \mathfrak{I} \sqrt{.2000}$

δ—. # $[*'+=θ \square < \square φ(T | \square θT \square σℑ√.16,500]$

J.M.JCOLLEGE FOR WOMEN, TENALI(Autonomous)

III B.Com General

Management Accounting Semester – V

Elective - II

Max.Marks:70

 $10 \times 1 = 10M$

Section – A

I. Answer all of the following.

1. $\Box] \varnothing \downarrow \leq \Box \psi \downarrow \sim \downarrow \leq :: T \cong \exists ?$

Time : 3Hrs.

- 2. ψ TH $X \wedge \psi$ T+{ $\wedge \nu \downarrow \Box$ +{ (+>× $\nu + \phi$) $\cong \exists T$ { (?
- 3. $\Box] \varnothing \downarrow \leq > \bullet \Delta \Xi (| \delta \Box | | \Box] \exists T^{TM} \langle T \therefore T \Re \sigma + \& \Box T^{TM} | \therefore T | \Box \lor \varepsilon TT.$
- 4. $\Box \ \sigma \Im \cap \varsigma \Box \ "\Delta \ \delta \Box \ \epsilon \sqrt{\#} \Box \ \sigma \Im \ \epsilon \leftrightarrow \epsilon \delta \Box \ \varnothing \ \nu \theta > \pm \ H \ \exists T?$
- 5. $\operatorname{TM}(T : H \Box \operatorname{TM}(\Box \sqcup \leq \Box \delta \sqcup) v | \Box \Box : |\Box \{ (\dots v \theta > \pm H \exists T?$
- 6. $\Box \ \sigma \mathfrak{I} \cap \varsigma \Box \ "\Delta \rangle^{TM} \langle \sigma \mathfrak{I} \ \varepsilon \leftrightarrow \phi \langle \sqrt{:} T \cong \exists ?$
- 8. $\sigma \Im \varnothing \cap \exists \Xi \mathbb{R}' \omega \Box \Delta \nu \theta > \pm H \exists T?$
- 9. $\Box] \varnothing \downarrow \leq \exists \Xi \mathbb{R}' \omega \Box \Delta \oplus \leq \Box \Box \Box \varphi [\sqrt{\angle + \# \rfloor \kappa \subseteq <} \cap H \Box \therefore T \cong \exists ?$
- 10. $\Box \ \omega \Box \in \Leftarrow | \nu \theta > \pm H \exists T?$

Section - B

II. Answer any two of the following.

2 x 10 = 20M

 $11. \sim \to \bullet T \varepsilon \ \ "\upsilon \ f" \ \theta \chi \subseteq \ldots : Y"^{TM} \Box \ \theta T + \& \Box \ 31.12.2007, 2008 \ \delta \Box \ + \varepsilon^{TM} \langle \Diamond \sigma \Box \ \therefore \oplus \leq \Box$ $\varepsilon T T \therefore H \Box \ ^{TM} \langle \Box \ \downarrow \leq \Box \ < \Box \ \phi \langle T \Box \ \psi \rfloor \sim \downarrow \leq {}^{TM} \langle \phi \langle \sqrt{\sigma} \Im T \ \# \rfloor \phi \langle T + \& \Box \ .$

ל"ט (" θχ⊆...∴ Y"™□ (י ורם י לר

			(∴⊷≤∟ ∴≀⊄)		
	2007	2008		2007	2008
τον∃Τ⊡ θεδ⊡ Τ εν∴ ε	600	750	Ву	800	1000
$\leftrightarrow \phi \langle T +$	20	20	⊔ ⊥≤σℑ νεΤ⊡ ⊥		
το□ σℑ∩ς□ "Δ ΚσℑΤ⊂	30	40	±∴T		
∴T	150	190			
τονεΤ□ ↓≤+ ΚσℑΤ⊂∴					
Т					
το□ ⊣≤σℑ ∛″υ (□ +	800	1,000		800	1,000
2. □ →≤ →≤+□ □ δ→√□ □	□ ∴ □ {	(θT+	&□ ↓ [+~ ψ□ { [[+# ⟨ +&□

 $|\mid \square \ \delta \square \ T \mid {}^{\mathsf{TM}} \square \ \omega \square \ \in \Leftarrow | \ 2. \mid < \square \ \varepsilon \leftrightarrow {}^{\mathsf{TM}} \langle \cap \square \ \omega \square \ \in \Leftarrow |$

 $3.\varphi(\sqrt{\psi}\varepsilon\sqrt{\theta}\leftrightarrow \Box \ \omega\Box \ \in \leftarrow].$

$\mathbf{v} \Box \Box ::\mathbf{T}$	σℑ√.	□ δ□ T .:T	σℑ√.
5,000 □ ↓∫∩{∫ ψ□ {″∴Τ ψ		υ ∫□ √εΤΤ∴Τ υ ∫□ εθ	6,00,000
□ {" 1₊↓	5,00,000	TT::T	5,00,000
σ3√.100		$\beta \subseteq' + \ge T \phi \langle T + \mid {}^{TM}\Box :: T$	2,40,000
8% 2000 □ ~∫₊⊐≤↔ □ ∨	2,00,000	δ□ σℑΤ⊕≤□	2,00,000
$\psi \square \{ " \therefore T$	4,00,000	$\Box TT\Delta > \bullet \delta \Box :: T$	55,000
&□ υ⊃+#⟨σℑΤ′ 9%	3,00,000	$\upsilon'' \leftrightarrow + \oplus \leq \Box \not \models \not \subset \theta > \bullet < \Box$	5,000
]∪σℑT∩∴T	1,50,000	Т	
$\Box TT\Delta < \Box TM \langle :: T$	50,000	$T \to \# \star = \theta$	
$\upsilon'' \leftrightarrow + \oplus \leq \Box \zeta \varepsilon \sigma \Psi \mid \& \Box \mid \Box \tau$		Y''^{TM}	
	16,00,00		16,00,000
	0		

$\mathbf{v} \Box \Box \therefore \mathbf{T}$	2006	2007	□ δ□ T ∴T	2006	2007
εT√∴<∫□ θ+	1,000	1,200	□ δ□ Τ ™(□ δ□		
]∪σℑT∩	90	185	∴Tэ	450	390
κ⊆<∫□ σℑ∆]∪σ	500	450	$\Box TT\Delta > \bullet \delta \Box : T$	200	15
ℑT∩	90	100	$\theta > \bullet < \Box T$	320	250
□≠₊□□□∼ſ	450	650	δ□ σℑΤ⊕≤□	800	1,400
&□ #\+#⟨σℑΤ′	200	150	υ∫□ εH□ ∴T	198	345
$\Box TT\Delta < \Box TM \langle :: T$	15	20	υ∫□√∃T	77	105
$\Box \ ^{\mathrm{TM}}\langle \sigma \Box \ \therefore T$			□ □ ↓□ #⟨σΨ		
	2,345	2,755		2,345	2,755

Section - C

III. Answer any two of the following.

2 x 20 = 40M

 $14. \sim > \bullet T \epsilon \ \delta \square \ \epsilon \sqrt{\#} \square \ \sigma \mathfrak{I} + \ \theta T + \& \square \ \Box \le \square \ \mathsf{I} \le \square \ \mathsf{I} \le \square \ \mathsf{I} = \mathsf{I} \otimes \square \ \mathsf{I} = \mathsf{I} \otimes \mathsf$

∃εσ□ ∴Τ	2002	2003	2004	2005
	σ 3√.	σЗ√.	σ ℑ√.	σ ℑ√.
□ .±±.: Τ 3 νεΤ⊐ .±.: Τ	100.00	95.00	120.00	130.00
$\overline{\nu}$ \exists $T \Box \theta \varepsilon \delta \Box T \varepsilon \lor \therefore \varepsilon \leftrightarrow \varphi \langle T - \psi \rangle$	60.00	58.90	69.60	72.80
$\delta \square \sqrt{\varnothing} \therefore $ γυ ($\square +$	40.00	36.10	50.40	57.20
_ σℑ∩ς□ ″Δ ΚσℑΤ⊂∴Τ	10.00	9.70	11.00	12.00
$\Box \sigma \mathfrak{I} \cap \mathfrak{c} \Box "\Delta $ " $\upsilon \cap \Box +$	30.00	26.40	39.40	45.20

15. $\rightarrow \bullet T \varepsilon \square \equiv \subset \theta \exists \varepsilon \sigma \square \therefore \mathsf{TM} \And \exists \therefore T \varepsilon \therefore \theta T \downarrow \leq \theta T \geq = \square \delta \longrightarrow | v | \square \square \therefore | \square \{ (\dots \square \mathsf{TM} \land \varphi \land \sqrt{\sigma \mathfrak{T}} \#] \varphi \land T \varepsilon T T.$

 $|\Box \ \delta \Box \ T| \mathsf{TM} \langle \Box \ \omega \Box \ \in \Leftarrow | 2.5$

 $\mathsf{TM}(\cap]\mathsf{TM}(\square \ \omega \square \ \in \rightleftharpoons | \ 1.5$

 $\delta - \varnothing \sigma \Box \ \delta \Box \ T \ :: T/\phi \langle \sqrt{\cup} \epsilon \sqrt{\theta} \leftrightarrow \Box \ < \int \Box \ T :: T \ 0.75$

 $\Box \ \sigma \Im \cap \varsigma \Box \ "\Delta \ \epsilon T \checkmark :. < \int \Box \ \theta + \sigma \Im \checkmark .60,000$

 $] \cup \sigma \mathfrak{T} \cap \therefore T \exists T \!\!> \!\!\bullet T \!\! \Rightarrow \!\! J \!\!\square \Downarrow \sigma \mathfrak{T} \! \sqrt{.40,000}$

 $16. \Box \sigma \mathfrak{I} \cap \varsigma \Box "\Delta > \bullet \Delta \downarrow \leq \Xi (| \delta \Box | \varepsilon TT \theta T \Box \sigma \mathfrak{I} \cap \equiv + \equiv < \Box \Box | \Box] \sim (, \varepsilon TTK \leftrightarrow \Box <] \varnothing \Xi () \leftrightarrow \therefore \theta T > \bullet \sqrt{]} \subset | \psi \Box \phi \langle TT \varepsilon TT.$

J.M.JCOLLEGE FOR WOMEN, TENALI(Autonomous)

III B.Com General & Computers

Corporate Accounting

Semester – V

PPW (4+1)

Objective:

- 1. To provide the knowledge relating to the Accounting Standards
- 2. To enable students to company final accounts using computers
- **3.** To enable the students to prepare financial statements of insurance and bank companies.

Unit- I: Accounting standards - Valuation of goodwill

Accounting standards- need and importance-an overview of Indian Accounting standards Valuation of goodwill-Need and methods-Normal profit method, Super profits methodcapitalization method.

Unit –II: Valuation of Shares

Need for Valuation-methods of valuation-Net assets Method, yield Basis method, Fair Value Method.

Unit-III: Company Final Accounts

Preparation of Final Accounts-Provisions relating to preparation of Final accounts-Profit and Loss Account and balance sheet-Preparation of final accounts using computers.

Unit-IV: Issue of bonus shares

Provisions of Company's Act and SEBI guidelines Acquisition of business and profits prior to incorporation-accounting treatment.

Unit-V: Amalgamation

In nature of merger and purchase-Calculation of purchase consideration-Treatment in the books of transferor and transferee (as per Accounting Standard 14, excluding inter- Company holdings) Recordings of transactions relating to mergers using computers.

Suggested Readings:

- 1. Principles and Practice of Accounting , R.L. Gupta & V.K. Gupta, Sulthan Chand & Sons
- 2. Accountancy-III , Tulasian, TataMcgraw Hill Co
- 3. Financial Accounting, Dr. V.K. Goyal, Excel books
- 4. Introduction to Accountancy., T.S. Grewal, S. Chand
- 5. Modern Accountancy Vol-II., Haneef and MukherjeeTataMcgraw Hill CO
- 6. Advanced Accountancy, Arulanandam , Himalaya publishers
- 7. Advanced Accountancy Vol-II ,S.N.Maheswary& V.L. MaheswaryVikash Publishing co.
- 8. Advanced Accountancy, Shukla and grewal S. Chand & sons
- 9. Advanced Accountancy, R.L. Gupta and Radhaswamy, Sulthanchand& sons
- 10. Corporate Accounting, GoyalVK, Excel

J.M.JCOLLEGE FOR WOMEN, TENALI(Autonomous)

III B.Com General & Computers

Corporate Accounting

Semester – VI

PPW (4+1)

Objective:

- 1. To provide the knowledge relating to the Accounting Standards
- 2. To enable students to company final accounts using computers

3. To enable the students to prepare financial statements of insurance and bank companies.

Unit –I: Internal Reconstruction

Internal Reconstruction-Accounting Treatment-Preparation of final statements after reconstruction-Recording of transactions relating to Internal Reconstruction using computers.

Unit –II: Bank Accounts

Bank Accounts-Books and Registers to be maintained by banks-Slip system of posting- rebate on bills discounted-Schedule of advances-Non-performing assets-Legal provisions relating to Preparation of Final accounts-Preparation of bank Final Accounts using computers.

Unit-III

Life Insurance Companies-Preparation of Revenue Account, Profit and Loss account, Balance Sheet and Valuation Balance Sheet.

Unit-IV

General insurance Preparation of Final accounts-with special reference to fire & marine insurance only.

Suggested Readings:

- 1. Principles and Practice of Accounting , R.L. Gupta & V.K. Gupta, Sulthan Chand & Sons
- 2. Accountancy-III , Tulasian, TataMcgraw Hill Co
- 3. Financial Accounting, Dr. V.K. Goyal, Excel books
- 4. Introduction to Accountancy., T.S. Grewal, S. Chand
- 5. Modern Accountancy Vol-II., Haneef and MukherjeeTataMcgraw Hill CO
- 6. Advanced Accountancy, Arulanandam, Himalaya publishers
- 7. Advanced Accountancy Vol-II ,S.N.Maheswary& V.L. MaheswaryVikash Publishing co.
- 8. Advanced Accountancy, Shukla and grewal S. Chand & sons
- 9. Advanced Accountancy, R.L. Gupta and Radhaswamy, Sulthanchand& sons
- 10. Corporate Accounting, GoyalVK, Excel
- 11. Corporate Accounting, Verma KK, Excel
- 12. International Accounting, Saudagaran, Cengage

J.M.JCOLLEGE FOR WOMEN, TENALI(Autonomous)

III B.Com General & Computers

Corporate Accounting

Semester – V

Max.Marks:70

Time : 3Hrs.

Section-A

I. Answer all of the following.

- 1. Define Accounting Standards.
 - $v \downarrow \Box + \{ (+>\times | \Box \varepsilon \sqrt{\Delta''} :: T \Box \sigma \mathfrak{I} \cap = + | \Box \lor \varepsilon T T. \}$

- 3. What is the Importance of valuation of shares? $\psi \square \{ " \therefore \exists \therefore T \varepsilon \downarrow \leq \geq T \ldots \geq \phi \mid T \downarrow \leq \neg \mid \beta \subseteq \varepsilon T T K \leftrightarrow^{TM} \langle \cong \exists T ?$
- 4. What is meant by preliminary expenses? $|\beta \leq \langle \Box \exists T \downarrow \leq K \sigma \Im T \subset : T \nu \theta > \pm H \exists T ?$
- 5. What is Discount on issue of shares? $\psi \square \{ ": \square | \prod \& \square \kappa \sum \neg + \ge T \lor \theta > \pm H \exists T ?$
- 6. What is meant by profits prior to incorporation? $\theta \psi [\sqrt{\langle \Box T \oplus \leq \Box \epsilon T T + \langle \Box T \rangle}" \upsilon (" : T \nu \theta > \pm H] \exists T ?$
- 7. What is meant by purchase consideration? $\downarrow = \theta T \ge \therefore T \mid \Box \iff \Box \therefore + \nu \theta \ge \pm H \exists T?$
- 8. Define amalgamation. $\delta \Box + \varphi (\sqrt{>} \bullet \epsilon TT \theta T \Box \sigma \Im \cap \equiv + |\Box \lor \epsilon TT.$
- 9. What is Bonus share? $\upsilon \not\subset \theta \delta \tau \psi \Box \{ " \nu \theta > \pm H \exists T ?$

Answer any two of the following.

П.

10. Mention the methods of calculating purchase consideration? $= \theta T >= ::T \mid |\Box \iff |\Box \implies :: \epsilon TT \mid \Box \rightarrow |\Box = TM \mid TM \mid C :: \theta T \mid U = \tau TT \mid C = TT \mid U = \tau TT \mid C = TT \mid C$

Section-B

2 x 10 = 20M

11. From the following information calculate the value of goodwill of the Business of Samson. Average capital employed in the business Rs.40,000 Net trading profit of the firm for the past 4 years 2006: Rs.12,200, 2007: Rs.11,000, 2008: Rs.2,000 and 2009: Rs.21,000 Rate of interest expected from capital Rs.10% Fair remuneration to the services of Samson Rs.3,600.

3 years purchase of additional profits on the basis of average profits of previous. Four years be treated as goodwill.

 $\begin{aligned} |\downarrow|+\sim \exists \epsilon \sigma \Box \quad \therefore T \; \Xi (+\delta \Box \; H \Box \; \Box \; \sigma \Im \cap \varsigma _"+\#] \; \Box \; \downarrow \leq \psi \Box \; \leftrightarrow \beta \subseteq \sigma \Box \; \Box \; \downarrow \left(\; \delta \Box \; +\Box \; +\sim \right) + = \\ \theta \exists \; v^{\mathsf{TM}} \langle \Box \; \psi \Box \; \leftrightarrow \beta \subseteq \sigma \Im > \bullet T \& \Box \; \exists \rangle \land \; \downarrow \supset \downarrow \left[\neg + \# \langle T \epsilon T T . \right] \end{aligned}$

 $\exists \Box \ \varphi [\sqrt{\angle} + \equiv \theta \ \epsilon T \sqrt{..} < \int \Box \ \theta + \sigma \Im \sqrt{.40,000} > \bullet^{TM} \langle 4 \ \delta \Box \ + \epsilon^{TM} \langle \Diamond \sigma \Box \ .. \ \rangle'' \upsilon \int \Box \ + 2006 \Im \sqrt{.12,200, 2007} \Im \sqrt{.11,000},$

2008эб т.2,000, 2009эб т.21,000

 $\begin{aligned} \varepsilon T \sqrt{..} < \int \Box \ \theta + \Box \ | \prod \neq \sigma \ge T \ | \ \Box \ \downarrow \mathfrak{F} \mathfrak{F} \ \mathfrak{e} \ \mathfrak{e} \& \Box \ f \ 10\% \ \mathfrak{E} (+\delta \Box \ H \Box \ \Box \ \delta \mathfrak{e} \ .. \mathfrak{E} \le \Box \ \mathfrak{e} T \sigma = \mathfrak{I} \le \Box \\ \Box \ \beta \subseteq \sim \rangle \not\subset \Box \ + \mathfrak{h} \rangle \ .. \ f + \# \downarrow | \ | \Box \ \Leftarrow | \Box \ \Box \ .. + \sigma \mathfrak{I} \sqrt{.3,600} > \mathfrak{I}^{\mathsf{TM}} \langle \ H \Box \ .. T > \mathfrak{I} \ \delta \Box \ + \mathfrak{e}^{\mathsf{TM}} \langle \diamond \Box \ h \Box \$

 $\begin{array}{l} \sigma\square \ \therefore \ \delta\square >\bullet \geq T \ \big| "\upsilon \ \big| \square \ + \ \big| \ \beta \subseteq \Leftarrow |\square \ \sim \downarrow \leq \square \ |\prod \ \epsilon T \sqrt{\& \square \ T \ } \delta\square \ + \ \epsilon^{TM} \langle \Diamond \sigma\square \ \therefore \ \nu < \square \ \theta |\square \ \lor \ \big| " \\ \upsilon \ \big| " \ \therefore \ T \ \downarrow = \theta T > \wp \ \therefore \ T \theta T \ > \bullet T \& \square \ \exists \ \big| \land > \pm \ \exists \ \therefore \ T \ \epsilon \ \downarrow \leq \{" \ \ldots \ast. \end{array}$

12. The balance sheet of 'A' Ltd. As on 31.12.2000 is given below.

Liabilities	Rs.	Assets	Rs.
Authorised capital 1,00,000	<u>10,00,000</u>	Fixed Assets	15,00,000
equity shares of Rs.10 each		Current Assets	5,00,000
1,00,000 equity shares of			
Rs.7.50 per share paid up	7,50,000		
General reserve	4,00,000		
Share Premium	2,00,000		
P/L account	2,50,000		
Creditor	4,00,000		
	20,00,000		20,00,000

The company decided to make partly paid shares fully paid out of P/L account. It was also decided to issue one fully paid bonus share for every two shares held and for this purpose the share premium was to be fully used first and later general reserve. Give Journal entries for the above.

 $\text{`A' Ltd. } \psi \square \] \square \ \delta \longrightarrow \left| \begin{array}{c} \nu | \square \ \square \ \therefore \ | \square \ \left\{ \left[\ \dots \ 31.12.200 \ \theta \ \right] \downarrow \left[+ \sim \exists < \int \square \ + > \pm \square \ \theta \square \ \sim . \end{array} \right] \right\}$

v □ □ ∴T	σℑ√.	$\Box \delta \Box T :: T$	σℑ√.
$\lor\sim$ $\iota \leq \Box \ TM \langle \ \varepsilon T < \div \Box \ \theta + 1,00,000$		$\delta - \sigma \sigma \delta T$	15,00,000
Ψ□ {"∴ΤΨ□ {" 1 ↓∫ 10σℑ√. #= □	10,00,000	∴T	5,00,000
$ eget{0.1} \theta$	7,50,000	$\# \langle \sigma \Box \ \delta \Box \ T \ :: T$	
Ψ□ {"₊∫ 1₊∫ σℑ√.7.50 #= □ ∨θ #↓	4,00,000		
*'+= 0 ~	2,00,000		
κ⊆<∫□ σℑΔ]∪σℑΤ∩	2,50,000		
ψ□ {″ ©∃Τφ⟨T+	4,00,000		
∀"υ ∫" θχ⊆∴ Υ"™ □			
\Box TT $\Delta < \Box$ TM $\langle :: T$			
	20,00,000		20,00,000

- A company Ltd. purchased a business on 1.4.2002. The company obtained certificate to commence business on 31.7.2002. From the following particulars for the year ending 31.3.2003 as certain profit prior to incorporation and divisible profits.
 - a. Total sales up to 31.3.2003 Rs.10,00,000. Sales from 1.4.2002 to 31.7.2002 Rs.2,50,000.
 - b. Gross profit for the year Rs.2,12,000
 - c. Expenses debited to P/L a/c are as to follows:

Particulars	Rs.
Rent	6,000
Insurance	1,500
Salaries	27,000
Selling expenses	9,000
Advertisement	8,000
Interest on debentures	4,000
Audit fees	1,200
Printing of Stationary	4,200
Depreciation on Machinery	30,000
Commission on sales	12,600
Bad debit(Rs.850 related	
to prior to incorporation)	2,400
General expenses	4,800
Director fees	2,600
Preliminary expenses	7,200

Interest paid to vendors up to 1.9.2002, 5,000

σℑ√. v<l↑ 6,000

; ∫ε√ 1,500 ϑ^{TM} : T 27,000 νεΤ□ ↓≤+ ΚσℑΤ⊂∴Τ 9,000 $|\Box \downarrow \leq \geq \theta \therefore T \qquad 8,000$ $\Box \& \Box \{ \land | \Box @E$ 1,200 $| \mapsto \{ + \times / \Box \delta ... \omega \Box \theta \downarrow$ 4,200 $\phi\langle T+ \mid TM \langle + \Box \mid \prod TM \langle \sigma \mathfrak{I} T \rangle \bullet T < \Box :$ 30,000 νεΤ□ ↓±∴□ |∏ ↓≤ΜΤω□ Η□ 12,600 $\sigma \square \square \cup " \dashv \Upsilon \therefore T$ 2,400 $(M{''} \not\subset \sigma \Im \sqrt{.850} \theta \psi (\sqrt{-1} \tau \epsilon TT + \sqrt{-1} \tau \downarrow \le \therefore \epsilon \vee)$ $\kappa \leq < \int \Box \ \sigma \Im \Delta \ K \sigma \Im T \subset \therefore T \qquad 4,800$ $(\Pi \Re \sigma I \leq ... \sigma \mathfrak{I}' \mid \Box \otimes E$ 2,600 $|\beta \leq \langle \int \Box \exists T \downarrow \leq K \sigma \Im T \subset \therefore T \qquad 7,200$ $1.9.2002 \ \varepsilon \sigma \Im \oplus \le \Box \quad \forall \varepsilon T \Box \quad \exists \le + < \Box \quad \sigma \Im T \therefore \oplus \le \Box \quad \varepsilon \& \Box \quad f \ \# \lfloor *' + \vert \Box \lor \sigma \Im \sqrt{.5,00}$ 0

Section-C

III. Answer any two of the following.

2 x 20 = 40M

14. The Balance Sheet of Deepak limited as on 31.3.2004 was as under.

Liabilities	Rs.	Assets	Rs.
4000 equity shares of Rs.100		Land of Building	2,50,000
each	4,00,000	Machinery	1,20,000
General reserve	50,000	Investment at cost	70,000
P/L account	50,000	(Market value Rs.60,000)	
Creditors	90,000	Debtors	1,00,000
Provision for Taxation	40,000	Stock	80,000
		Cash at Bank	10,000
	6,30,000		6,30,000

Additional Information:

- a. Land and Building and Machinery are valued at Rs.2,40,000 and Rs.95,000
- b. Bad debts Rs.5,000
- c. Good will is to be taken at Rs.50,000

- d. The normal rate of dividend declared by such type of companies is 15% on paid up capital
- e. The average rate of dividend declared and paid by this company is 20% on its paid up capital. Calculate fair value of equity shares.

```
31.3.2004
```

$\mathbf{v} \Box \ \Box \ \therefore \mathbf{T}$	σℑ√.	□ δ□ T .:T	σ ℑ√.
4,000 □ ⊣∫∩{∫ ψ□ {″∴Τ 100σℑ	4,00,000	υ∫□ √∃Τ υ∫□ εΗ□ .:	2,50,00
√. #=`)θ	50,000	Т	0
κ⊆<∫□ σℑΔ]∪σℑΤ∩	50,000	$\phi \langle T+ TM \Box : T$	1,20,00
ἐ″υ (″ θχ⊆∴ Υ″™ □	90,000	□ ≥T…□ &□ T∴(K↓	0
\Box TT $\Delta < \Box$ TM $\langle :: T$	40,000	□ T)	70,000
$ \Box \ \theta T \Box \ \therefore \oplus \leq \Box \ \cong \sigma \Box \ \in \geq T$		(ε√ℜσ¬{∧∃∴Τε 60	
		,000)	1,00,00
		$\Box TT\Delta > \bullet \delta \Box T :: T$	0
		δ□ σℑΤ⊕≤□	80,000
	6,30,000	$\upsilon'' \leftrightarrow + \oplus \leq \Box \hspace{0.1cm} \big \not\subset \theta \! > \! \bullet \! < \Box \hspace{0.1cm}$	10,000
		Т	
			6,30,00
			0

 $\nu < \Box \ \theta | \Box \lor \delta \Box \ \epsilon \sqrt{\# \Box} \ \sigma \Im \epsilon TT$

1.

 $\begin{array}{c} \upsilon \left(\Box \quad \sqrt{\exists} T \ \upsilon \right) \left(\Box \quad \varepsilon H \Box \quad \therefore T \ \varepsilon T \right) \varphi \langle TT \ \varphi \langle T+ | \ ^{TM} \Box \quad \therefore T \ \sigma \Im \sqrt{.24,000} \ \varepsilon T \right) \varphi \langle T \Im \sqrt{95}, \\ 000 \therefore \oplus \leq \Box \quad \exists \therefore T \varepsilon \downarrow \leq \geq \dots \Box \quad \& \Box \quad \theta \exists. \end{array}$

```
2. σ□ □ \upsilon"→Υ∴Τ σ\Im√.5,000
```

 $3. > \bullet T \& \Box \exists \land \sigma \Im \sqrt{.50,000} \therefore T > \pm \rho \delta \Box T \downarrow = \psi \Box *.$

5. $\delta \square > \bullet \ge T \& \square \exists \& \downarrow + \& \square T \neq \sigma \ge T 20\% \# \downarrow *' + \equiv \theta \epsilon T \checkmark : < \int \square \theta + \square | \square \square \square \int \cap \{ | \psi \square \}$ {" $\phi \langle TT \square \le | \exists : T\epsilon \theta T \square \le \theta T > = \theta T\epsilon TT.$ The following trail balance has been extracted from the books of XYZ Ltd. As on 31.3.2001.youare required to prepare profit and loss account and Balance sheet as on that date.

Debit	Rs.	Credit	Rs.
Land of Buildings	34,000	Share Capital	1,00,000
Furniture	6,000	General reserve	5,000
Plant & Machinery	15,000	10% Debentures	40,000
Stock 31.3.2001	75,000	Creditors	4,000
Salaries	25,000	Gross Profit	75,000
Debtors	10,000	Interest on investments	1,000
5% Investments	20,000	Profit & Loss a/c on 1.4	35,000
Bank	5,000		
Advance income Tax	2,000		
Debenture interest	2,000		
Directors fee	7,000		
Rent rates & Insurance	24,000		
Goodwill	35,000		
	2,60,000		2,60,000

- Depreciation on assets
 Land and buildings at 10%p.a
 Plant and Machinery at 8% p.a
- 2. Provision for bad debts at 6%
- 3. The directors have recommended
 - a. Transfer Rs.3,000 to general reserve account
 - b. Equity dividend at 10% on the paid up capital
 - c. Provision for income Tax for Rs.4,000

31.3.2001 H $[XYZLtd.v+J \leq \sim > \bullet T \varepsilon \square \varepsilon \cap \square \& \square \theta \sim .]" \cup [" \theta \chi \subseteq ... : Y"^{TM}] \varepsilon$ $\varphi \langle TT \square \delta _ | v | \square \square : . | \square \{ [... \square ^{TM} \langle \varphi \langle \sqrt{\sigma \Im T} \#] \varphi \langle TT \varepsilon TT.$

+((·		
&L_{^	σℑ√.	ℜ₊J&□ {∧	σℑ√.
ບ ໂ⊡ √∃T ບ ໂ⊡ ɛH⊡ ∴ີ	34,000	εT√∴<∫□ θεTT	1,00,000
$ \Box \ \Box \ \downarrow \Box \ \# \langle \sigma \Psi$	6,000	κ⊆<∫□ σℑΔ]∪σℑΤ∩	5,000
$\beta \subseteq ' + \ge T \phi \langle T + TM \Box : T$	15,000	10% &□ υ⊃+#⟨σℑΤ′	40,000
δ□ σℑT⊕≤□ 31.3.200	75,000	\Box TT $\Delta < \Box$ TM $\langle :: T$	4,000
ϑ^{TM} :: T	25,000	$\delta \Box \sqrt{ } \therefore $ $"\upsilon \Box +$	75,000
$\Box TT\Delta > \bullet \delta \Box T :: T$	10,000	□ ∨≥T… □ &□ T∴□ ∏ ε	1,000
5% □ ≥T □ &□ T∴T	20,000	$\Box f$	35,000

υ″↔+⊕≤□	5,000	'υ (″ θχ⊆∴ Υ″™□ 1.4	
$v \& \Box \cap \theta T \diamond \{ " \oplus \leq \Box \diamond \\$	2,000		
&□ υ⊃+#⟨σℑ′□ ∏ ε&[2,000		
f	7,000		
&\∏ℜσ₊⅃≤…σℑ′ □ ©	24,000		
E	35,000		
ν<\∏≠σ≥Τ';∫ε√			
>•T&□ ∃}∧	_		_
	2,60,000		2,60,000

 $1. \upsilon \left[\Box \sqrt{\exists T} \upsilon \right] \Box \varepsilon H \Box \therefore \Box |\Pi \delta\Box + \varepsilon^{TM} \langle \delta\Box \sigma\Box \Box \downarrow \int 10\%. \beta \underline{\subseteq}' + \ge T \varphi \langle T+| TM\Box \therefore \Box |\Pi \delta \forall TM \langle \sigma \Im \rangle \bullet T < \Box \therefore \underline{\cong} \sigma \Box \in \ge T \#] \varphi \langle TT\varepsilon TT.$

- 2. $\sigma \square \square \upsilon'' \dashv [\therefore \square \sim] \square TT\Delta] > \delta \square T] \therefore \square | \square 6\%$
- 3. $\kappa \leq \langle \Box \sigma \Im \Delta] \cup \sigma \Im T \cap \oplus \leq \Box \epsilon T [\downarrow + | \Box \lor \sigma \Im \sqrt{.3,000}$
- $4. \Box \downarrow \left[\cap \{ \mid \psi \Box \mid \{ " \ \# \mid *' + \equiv \theta \ \epsilon T \sqrt{..} < \int \Box \ \theta + \Box \ \mid \prod \ 10\% \ \& \Box \ \exists \& \mid + \& \Box \ T' \right] \right]$
- 5. $\Box < \Box \varphi \langle T | \Box \theta T \Box \Box \sim \int \sigma \Im \sqrt{4,000} \cong \sigma \Box \in \geq T \# \downarrow \varphi \langle TT \varepsilon TT.$
- 16. X Company Ltd. Was taken over by Y come up on the following terms.
 - a. The 'Y' Company is to assume the liabilities and to take over the assets at book value.
 - b. The 'Y' Company is to discharge the debentures in 'X' Company at a premium of 5% is the issue of debentures in Y company.
 - c. The Y Company is to pay the share holders in the X Company Rs.10 per share in cash and to give three Rs.10 shares in Y Company for every share in X Company.

Liabilities	Rs.	Assets	Rs.
Capital 47,500 shares paid		Goodwill	7,00,000
up 20 each	9,50,000	Buildings	3,13,000
5% Debentures	2,40,000	Plant	64,200
Reserve Fund	3,00,000	Fixtures	17,000
Creditors	1,53,000	Debtors	2,19,800
P/L account	99,200	Stock	3,86,200
		Cash	42,000
	17,42,000		17,42,000

The following is the Balance Sheet of X Company Ltd. As on 31 Dec.2005

Show ledger accounts to close the books of X and opening entries in the books of Y. $|\downarrow| + \omega = \sigma \mathfrak{I}^{TM} \langle T \therefore = |\Pi \downarrow \leq + = | \downarrow \downarrow = | \downarrow | \delta = + \forall \theta + \# \downarrow \delta = T \oplus \leq = + \geq T + \sim.$

 $() x \downarrow \leq + \Box | \& \Box \ \upsilon \supset + \# \langle \sigma \mathfrak{I}' \theta T \ \mathfrak{I}' \delta \Im \langle T + \mathsf{I}^{\mathsf{M}} \wp \downarrow \leq + \Box | \& \Box \ \upsilon \supset + \# \langle \sigma \mathfrak{I}' \rangle \not\subset \# \lfloor *' + \# \langle T \theta T \rangle$

v □ □ ∴T	σ ℑ√.	□ δ—	σℑ√.
47,500 ψ□ {"⊕≤□ σℑ√. 20#=	9,50,000	>●T&□ ∃}∧	7,00,000
ЭӨ	2,40,000	ບ∫□ εΗ□ ∴Τ	3,13,000
5% &□ ບ⊃+#⟨σℑΤ′	3,00,000	β ⊆ ′+≥T	64,200
]∪σℑΤ∩□~ĺ	99,200	□ □ ₊≤σℑΆ∵Τ	17,000
[⟩] ″υ∫″ θχ⊆∴ Υ″™□	1,53,000	\Box TT Δ >• $\delta \Box$ T :	2,19,800
\Box TT $\Delta < \Box$ TM $\langle :: T$		Т	3,86,200
		δ□ σℑΤ⊕≤□	42,000
		θ>●<□ T	
	-		_
	17,42,200		17,42,200

 $31.12.2005 \ \theta \downarrow \leq +\Box \ | \ \Box \ \delta _ | \ v \Box \ \Box \ \therefore \ |\Box \ \{ \int \ldots \ d h \} \ d h \}$

J.M.JCOLLEGE FOR WOMEN, TENALI(Autonomous)

III B.Com General & Computers

Corporate Accounting

Semester – VI

Time : 3Hrs.

Max.Marks:70

Section-A

I. Answer all of the following.

- 10 x 1 = 10M
- 1. What is meant by Internal Reconstruction? $\nu + TM \langle \sigma \Im Z^{TM} \langle | \Box \lor \theta] \Box \sigma \Box \Box \Delta \epsilon TT \upsilon \theta > \pm H \exists T?$
- 3. What is the difference between Internal Reconstruction and external Reconstruction? $\nu + TM \langle \sigma \Im Z^{TM} \langle | \Box \lor \theta] \Box \sigma \Box \Box \Delta'' \Box \downarrow | \Box \varsigma _'' \sigma \Im Z^{TM} \langle | \Box \lor \theta] \Box \sigma \Box \Box \Delta'' \Box \downarrow | > \bullet \therefore TM] \&$ $\Box \cong \exists T?$
- 4. Mention the important books maintained by Bank. $\upsilon'' \leftrightarrow + \bigoplus \leq \Box \quad \langle \sigma \mathfrak{T} \cap \varsigma - u'' + \# \langle \Box \& \downarrow \varepsilon TTK \leftrightarrow \psi [T \rightarrow \theta | \Box \lor \delta \Box \mid \downarrow \pm \therefore \theta T \ \mathsf{TM} [\therefore | \Box + \& \Box]$.
- 5. What do you mean by Non performing Assets? $\Box \ \sigma \Im \sigma \Im \varnothing \downarrow \leq \Box \ \delta \Box \ T \ \therefore T \ v + \phi \rangle \cong \exists T \{ \ (?) \}$
- 6. What are different types of insurances? : $(\varepsilon \sqrt{2} \sigma \mathfrak{I} \perp \pm ... T \cong \exists ?$
- 7. What is meant by valuation Balance Sheet? $\epsilon TT^{"\leftrightarrow+\downarrow \leq \theta} \supseteq \delta_{-} | v | \Box \Box : | \Box \{ \dots v \theta > \pm H \exists T \}$
- 8. What is meant by fire Insurance? $\nu \angle \Box$: $(\epsilon \sqrt{\nu \theta} \ge \pm H | \exists T ?)$
- 9. Define Rebate on bills discounted.

 $_::T'::T \& \Box \kappa \Sigma \neg + \ge T \Box |\Pi] \upsilon \ge T \theta T \Box \sigma \mathfrak{I} \cap \equiv + \# \langle + \& \Box ? \rangle$

- 10. What is Endorsement and Guarantees?
 - $\Box \sim \mathbf{V} :: T > \pm \leftrightarrow \sigma \mathfrak{I} + \{\Upsilon :: T \lor \theta > \pm H \exists T ?$

Section-B

II. Answer any two of the following.

11. Thefollowing in an extract from the Trail Balance of Andhra Bank as at 31.3.2008.

	Rs.	Rs.
Bills discounted	51,50,000	
Rebate on bills discounted due April 2007		30,501
Discount received		1,45,500

An analysis of bills discounted as shown above shows the following.

Due date of	Amount	Term(months)	Discounts
bills			@ %PA
Jan.13 th	7,50,000	4	12
Feb 17 th	6,00,000	3	10
March 6 th	4,00,000	4	11

2 x 10 = 20M

March 16 th	2,00,000	2	10
------------------------	----------	---	----

Find out the amount of discount to be credited to Profit and Loss Account and pass appropriate entries.

 $\delta = \sqrt{2} = \pi \theta \& = \kappa \sum + (\wedge \theta)$

 $\Box | \Pi \theta \mathsf{TM} \downarrow * | = \theta \& \Box \kappa \Sigma \to + \{ \land \# \downarrow \delta = \theta _ \therefore T' \therefore T \exists \Xi \mathbb{B}' \omega \Box \Delta \mid \downarrow \uparrow + < \Box \# \langle \sqrt{|\Box} \& \Box \psi \downarrow T \to \theta \sim.$

1.45.500

∴T′ ™~	$\psi TT^{TM}\langle +$	±∴ : ٤↔٤~ 6 H	&□ κ∑¬+{∧≠σ∴T
			(δ□ +ε™(◊σ□ □ ↓]
∪θε] 13	7,50,000	4	12%
$\square \square \square \epsilon$] 1	6,00,000	3	10%
ε√]⊂ 6	4,00,000	4	11%
ε√]⊂ 16	2,00,000	2	10%

12. From following particulars prepare fire revenue a/c for year ending 31.3.2006.

	Rs.
Claims paid	9,60,000
Claims as on 1.4.2005	80,000
Claims intimated but not accepted on 31.3.06	20,000
Claims intimated and accepted but not paid on 31.03.06	1,20,000
Premium received	24,00,000
Re-insurance premium	2,40,000
Commission	4,00,000
Commission on reinsurance ceded	20,000
Commission on reinsurance accepted	10,000
Expenses of management	6,10,000
Provision for unexpired risk on 1.04.05	8,00,000

40,000 Additional provision of unexpired risk Bonus in reduction of premium 24,000 You are required to provide for additional reserve for required risks at 1% of net premium in addition to opening balance. $31.03.06 \text{ H} \ \text{H} \ \text{H}$ $\langle \sqrt{\sigma \Im T} \#] \phi \langle T + \& \Box \rangle$. $\sigma \Im \sqrt{}$ $\# \downarrow *' + \equiv \theta \Re \downarrow' \sigma T T \psi \Box T$ 9,60,000 $\# \mid *' + \equiv \epsilon : \delta \longrightarrow \Re \downarrow' \sigma TT \psi \square T : T 1.4.05$ 80,000 $31.3.06 \ \theta^{\mathsf{TM}} \bigl[* \varphi(\mathsf{T}|\Box) \rbrack = \theta \ \mathfrak{R}_{\mathsf{L}}' \sigma \mathsf{T} \mathsf{T} \psi \Box \ \mathsf{T} \therefore \mathsf{T}_{\mathsf{L}} \bot \downarrow [\mathsf{v} + \bot_{\mathsf{L}} \bot \leq] + [\Box \Box \& \Box \Box \exists$ 20,000 $31.3.06 \ \theta^{\text{TM}} \downarrow * \varphi \langle T | \Box] = \theta \ \Re_{\bullet} ' \sigma T T \psi \Box T \therefore T \ \varepsilon T] \varphi \langle TT \ \nu + \bot_{\bullet} \leq] + = \theta \exists_{\bullet} \bot \pm | \# \lfloor *' + = \theta \exists_{\bullet} \bot \pm \theta \exists_{\bullet} \bot = \theta \exists_{\bullet} \bot \pm \theta \exists_{\bullet} \bot = \theta \exists_{\bullet} \bot \pm \theta \exists_{\bullet} \bot = \theta \exists_{\bullet} \bot = \theta \exists_{\bullet} \bot = \theta \exists_{\bullet} \bot \pm \theta \exists_{\bullet} \bot = \theta \exists_{\bullet} \sqcup = \theta \exists_{\bullet} \sqcup = \theta \exists_{\bullet} \sqcup = \theta \exists_{\bullet} \blacksquare = \theta \exists_{\bullet} \blacksquare$ □ ∃ 1,20,000 $\varepsilon \equiv \Box \theta \mid MT \phi \langle T +$ 24,00,000 $|\Box \lor \theta \downarrow \mathbb{B} \Leftrightarrow \varepsilon \checkmark | |\odot \exists T \phi \langle T +$ 2,40,000 $\dashv \leq MT \omega \Box \theta T$ 4,00,000 $\varepsilon < T : T \oplus \le \theta = | \Box \lor \theta \lor B \Leftrightarrow \varepsilon \lor \Box | \Box \lor M T \omega = \theta T$ 20,000 $v + \bot \downarrow \exists = \theta |\Box \lor \theta \downarrow \mathbb{R} \Leftrightarrow \varepsilon \sqrt{\Box} |\Box \downarrow \leq MT \omega \Box \theta T$ 10,000 ψ TH $X \wedge \psi$ T+ \geq TK σ T \subset .T 6,10,000 $1.4.05 > \bullet \& \Box Te \lor \rho\sigma \Im \Box]\delta \tau \neg \Re \downarrow \Box \Box \sim ($ 8,00,000 >•& TeV $\rho\sigma\Im$ $\delta\tau - \Re \downarrow \nabla v < \theta \cup v < \epsilon$ 40,000 $TM \langle Z + \equiv \theta | | \odot \exists T \phi \langle T + \Box | \Box \upsilon \not\subset \theta \delta \tau$ 24,000 $\mathsf{MT}\sigma\mathfrak{T} \mid \beta \subset \sigma\mathfrak{T} + \upsilon \left(\Box \ \Box \ \therefore \cap^{\mathsf{TM}} \wp \ \beta \subset \geq T > \pm > \bullet \& \Box \ \mathsf{T} \varepsilon \lor \rho \sigma\mathfrak{T} \ \exists \delta \tau \neg \therefore \oplus \leq \Box \ \upsilon < \Box \right)$ $\theta + \geq 1 \cup \sigma \mathfrak{T} \cap \cong \sigma \square \in \geq T \# [\delta - 1\% \square \downarrow \leq \sigma \mathfrak{T} | \square \sigma \langle T +, \square \sim (\downarrow \cup \varepsilon T \# [\phi \langle T \varepsilon \rangle$ $\geq \theta T.$

13. Prepare revenue Account of LIC – West Zone from the following.

Particulars	Rs.	Particulars	Rs.
Claims by death	76,000	Claims by maturity	30,250

Premiums	7,26,690	Transfer fees	129
Consideration for annuities		Annuities paid	53,454
granted	82,120	Expenses of management	31,924
Bonus paid in cash	2,420	Interest dividend	97,836
Commission	9,570	Surrenders	13,140
IT on Interim dividend	35,710	Dividend paid on capital	5,500
Bonus in reduction of			
premium	980		
Life Insurance fund on			
1.4.2003	15,00,000		

Paid up capital of the corporation is Rs.5,00,000 and the net liability as per actuary's valuation is Rs.10,00,000 on 31.12.2004.

 $\sim > \bullet T \epsilon \exists \epsilon \sigma \Box :: \theta T + \& \Box \text{Lic}$

 $|\Box \&\Box \epsilon T \sigma \Im \epsilon T + \&\Box \therefore + \Re \sigma \exists |\Box \Pi \leftrightarrow Y''^{TM} \Box \theta T \ ^{TM} \langle \varphi \langle \sqrt{\sigma} \Im T \# \rfloor \varphi \langle TT \epsilon TT.$

∃εσ□ ∴Τ	σℑ√.	∃εσ⊡ ∴Τ	σℑ√.
\mathfrak{R} , $\mathfrak{I}'\sigma TT\psi \Box T$, $T = \varepsilon T\sigma \mathfrak{I}\Delta + \mathfrak{I}M$	76,000	ℜ₊′σΤΤψ□ Τ∴Τ (>•&□ Τ	30,2
69	7,26,69	∨ [™] Ø)	50
∃Tφ⟨T+∴T		□ ~* □ ©E∴T	129
Ψ□],.±.:⊕≤□ □ ⇐ □ □ .:+	82,10	#(*'+≡θψ□],⊥±∴T	53,4
$\theta > \bullet < \Box T > \pm \# \{ *' + \equiv \theta \ \upsilon \not\subset \theta \delta \tau \}$	2,420	□ σℑ∩ς□ "Δ ΚσℑΤ⊂∴Τ	54
,⊣≤MT∞□ H□	9,570	ε&□ <i>f</i> , &□ ∃&\+&□ Τ′	31,9
εT<□ ↔→±♥θ &□ ∃&\+&□ T□	35,710	€<□ T∴T↓℘⇒)□ ↓	24
$\prod \Box \Theta T \Box$	980	$\epsilon T < \int \Box \theta + \Box \mid \Pi \& \Box \exists \&$	97,8
$ \odot \exists T \phi \langle T + TM \langle \angle Z + \Box \lor \geq \upsilon \not\subset \theta$	15,00,0	+&□ T'	36
δτ	00		13,1
$\Im \exists TM \langle ; f \varepsilon \sqrt{\Box} \sim f (1.4.2003)$			40
			5,50
			0

$$\begin{split} \delta & = +\delta \boxtimes \# \lfloor *' + \mid \Box \lor \varepsilon T \lor \therefore < \int \Box \ \theta + \sigma \Im \lor .5,00,000 ; \int \varepsilon \lor > \bullet \Delta'' + \Box \leq \varepsilon TT \mid \mid \Box \ \bot \pm \sigma \Im \\ & + \Box \ \Box \leq \sigma \Im \ \upsilon'' < \Box \iff^{TM} \langle \ \sigma \Im \lor .10,00,000 \end{split}$$

Section-C

III. Answer any two of the following.

2 x 20 = 40M

14. The Balance Sheet of unsuccessful company was as following on 31.3.2004.

Liabilities	Rs.	Assets	Rs.
Share Capital		Buildings	1,60,000
5,000, 8% Pref. shares of 10	50,000	Machinery	80,000
each		Furniture	20,000
30,000 Equity shares of Rs.10		Debtors	50,000
each	3,00,000	Discount on issue of shares	10,000
Creditors	50,000	Profit & Loss Account	80,000
	4,00,000		4,00,000

On the above data the following scheme o internal reconstruction was accepted.

- a. Rs.10 preference shares be reduced on an equal number of fully paid reference shares of Rs.6 each.
- b. Rs.10equity share be reduced by Rs.6 each through total number of equity shares will remain the same.
- c. That the remaining amount thus available is apportioned as follows.
 - i. To write off Rs.60,000 from buildings, Rs.30,000 from machinery, Rs.6,000 from furniture and the balance available from debtors.

Prepare the Balance sheet of the company after implementation of above scheme.

$31.3.2004 \ \theta \ \text{even} \ \exists \cup \varphi \langle T \text{e}^{+\text{TM}} \langle + \downarrow \pm \Box \rangle$	$\mathbf{a} \sqsubseteq \mathbf{b} = $
$\cap \square \& \square \theta \sim$.	

$\nu \square \square \therefore T$	σℑ√.	□ δ—	σ3√.
$\psi \Box \{ " \epsilon T < \int \Box \theta +$		υ∫□ εΗ□ ∴Τ	1,60,00
$5,000, 8\% v \sim f \downarrow \leq \mid \Box \lor \psi \Box \{" \therefore T \in U \land U \in U \}$	50,0000	$\phi \langle T+ TM \Box :: T$	0
$\Im \sqrt{.10} = \square \square \Theta$	3,00,000	□ □ ↓□ #⟨σℑΤ	80,000
$\sigma \Im \sqrt{.10} \#= \square \square \theta 30,000 \square \downarrow [\cap \{ $	50,000	$\Box TT\Delta > \bullet \delta \Box T :: T$	20,000
$\psi \Box \{"::T$		$ \psi \square \{ " \therefore X" \downarrow \square \Pi \& \square \}$	50,000
\Box TT $\Delta < \Box$ $(\stackrel{\text{TM}}{:}, T)$		$\kappa \Sigma \rightarrow + \{ \land$	10,000
		}″υ ∫□ θχ⊆∴ Υ″	80,000
		TM	
	4,00,000		

	4,00,00
	0

 $|\prod \mathsf{TM} \neg \theta| \downarrow |+ \sim v + \mathsf{TM} \langle \sigma \mathfrak{I} Z^{\mathsf{TM}} \langle | \Box \lor \theta] \Box \sigma \Box \Delta | \Box < :\Box \downarrow \pm \Box \Box v \psi [\sqrt{\sim} + \# \langle \& \Box \psi [T \rightarrow \theta \sim .$

 $1. \lrcorner \leq \Box \models \in T \Box \land \delta \Box \land T \models \therefore \theta T \land \mathfrak{I} < \Box \land T \Uparrow \models \sigma \mathfrak{I} \not < \& \Box +$

 $\begin{array}{c} 2. \ \upsilon \left[\ \ \varepsilon H \Box \ \therefore \ \theta T + \& \Box \ \ \sigma \Im \sqrt{.60,000, \ \varphi} \langle T + \left| \ {}^{TM} \Box \ \therefore \ \theta T + \& \Box \ \ \sigma \Im \sqrt{.30,000, \ |\Box \ } \right. \right] \\ \# \langle \sigma \Im T \ \theta T + \& \Box \ \ \sigma \Im \sqrt{.6,000, \exists T > \bullet^{TM}} \ \psi \langle T T^{TM} \langle \left| + \Box \ TT \Delta \right| > \bullet \delta \Box \ T \right| \\ \therefore \ \theta T + \& \Box \ \ \sigma \Im \\ < \Box \ T \widehat{1} |\Box \ \ \sigma \Im \# \langle \& \Box \ +. \end{array}$

 $\Box \mid \Pi \mid \Box < :\Box \downarrow \exists \forall \epsilon T :: T \cup] \vdash \Theta \mathsf{TM} \langle \sigma \mathfrak{T} \Psi \Box \mathsf{TM} \rangle \downarrow \leq + \Box \mid \Box \delta \vdash \mathsf{V} \Box \Box :: \Box \{ \Upsilon ... \}$

- $\Box \quad \mathsf{TM} \langle \phi \langle \sqrt{\sigma} \mathfrak{T} \# \rfloor \phi \langle T + \& \Box \ .$
- 15. Prepare the Balance sheet of Aravind Bank Ltd. As on 31st December 2004 from the following particulars.

Debit	Rs.	Credit	Rs.
Money at call and short notice	5,000	Paid up capital	10,000
Investments	30,000	Authorised capital Rs.50,000	
Bills discounted and purchased	4,000	Bills payable	5,000
Furniture and fixtures	1,000	Current accounts	25,000
Land and Buildings	17,000	Fixed deposits	14,000
Loans	8,000	Profit for the year	4,000
Cash credits	3,000	Savings Bank accounts	10,000
Cash on hand and at bank	10,000	Reserve fund	10,000.
	78,000		78,000

The profit for the year is arrived at before making adjustments for unexpired discount Rs.50 on bills discounted during the year not matured on 31st December 2004.

Acceptances and endorsements on behalf of customers Rs.2,000 and claims against the bank not acknowledged as debts amounted to Rs.500.

&_{^	σ ℑ√.	ℜ₊J&□ {∧	σℑ√.
$\exists - \Box \ge \oplus \rangle \sigma \mathfrak{T} = H \bot \delta \sigma \mathfrak{T} = H \bot \delta \sigma \mathfrak{T} = 0$		#(*'+≡θ εT√∴<∫□ θ+	10,000
ε↔ε~∫}⊄ε#⅃⊂θ>●<Ο Τ	5,000	$\nu B \int ds $	
□ ≥T□ &□ T.:.T	30,000	θ +(σ \Im $\sqrt{.50,000}$)	5,000
&□ κ∑¬+≥T εT]φ(TT ↓=θT>℘	4,000	$\# \lfloor *' + \mid \Box \lor _ \therefore T' \therefore T$	25,000
$\therefore T \# \bot \delta \longrightarrow \theta \square \varsigma \Theta + \& \square \therefore T$	1,000	$ISR\sigma+\{\wedge Y''{}^{TM}\square \ \therefore T$	14,000
$ \Box \Box \downarrow \Box \# \langle \sigma \Im T, \Box \longrightarrow \exists \leq \subset \sigma \Im T'$	17,000	∣□ ─₋₋₋ᠯ◊&□ &□ β⊆□	4,000
υ ∫□ √∃Τ υ ∫□ εΔ″∴Τ	8,000	\diamond	10,000
\Box TT Δ'' . T	3,000	$\Box \delta \Box + \varepsilon^{\mathrm{TM}} \langle \diamond \sigma \mathfrak{I} \varepsilon \mathrm{TT} \theta \oplus \varsigma \rangle$	10,000
⊣±↔ωτ ℜ₊J&□ ≥T'	10,000	□	
$\# \downarrow \Leftarrow \theta > \bullet < \Box T \varepsilon T] \phi \langle TT \upsilon'' + \oplus \le$		□ δ∃+>×◊ υ″+⊕≤□ &□	
$\Box \not \subset \theta > \bullet < \Box T$		β <u>⊂</u> □ ≥T′	
	78,000]∪σℑΤ∩□~∫	78,000

16. From the following particulars, prepare Revenue Account and Balance Sheet of Life Insurance Corporation as on 31.12.2004.

Debit Balance	Rs.	Credit Balance	Rs.
Claims by death	1,00,000	Capital	1,00,000
Claims by maturity	3,00,000	Insurance fund	8,00,000
Surrenders	30,000	Reserve fund	3,00,000
Annuities	20,000	Premiums	3,00,000
Cash bonus	10,000	Registration fee	1,00,000
Bonus in reduction of		Consideration for annuities	50,000
premiums	20,000	Bills payable	5,000
Buildings	3,70,000		
Investments	5,00,000		
Loans	3,00,000		
Bills receivable	5,000		
	16,55,000		16,55,000

Adjustments:

i. Claims admitted by maturity but not paid Rs.15,000

ii. Further bonus utilized for reduction of premiums Rs.5,000

iii. Outstanding premium Rs.25,000

iv. Reinsurance claims recoveries by death Rs.10,000

 $\begin{aligned} |\downarrow|+\sim \exists \varepsilon \sigma \Box \therefore T \ \theta T + \& \Box \ \vartheta \exists^{TM} \langle ; \left[\varepsilon \sqrt{\delta \Box} + \delta \Box \ \varnothing \ \varphi \left[TT_{\downarrow} \leq \neg \ \Re \sigma \exists \theta \sqrt{\leftrightarrow} \ Y''^{TM} \Box \ \theta T \right] \\ 31.12.2004 \ H\Box \ \{ \left[\Box \ \delta - \right] \ v \Box \ \Box \ \therefore \ \Box \ \{ \left[\ldots \Box \ T^{M} \langle \varphi \sqrt{\sigma} \Im T \ \# \right] \varphi \langle T + \& \Box \ . \end{aligned} \end{aligned}$

&l_{∧□ ∴∩∴T	σℑ√.	│ℜ₊⅃&□ {∧□ ∴∩∴Τ	σЗ√.
εΤσℑΔ″∴□ ∏ ℜ₊Ι΄σΤΤψ□ Ί	1,00,000	εΤ√∴<∫□ θεΤΤ	1,00,000
∴T	3,00,000	θ∃™< ;∫ε√□ ~∫	8,00,000
>•&□ Tε∨ ρ]θ ℜ₊'σTTψ□ T	30,000]∪σℑΤ∩□~∫	3,00,000
.:.T	20,000	$ \odot \exists T \phi \langle T \psi \Box T$	3,00,000
$\mathfrak{s}^{\mathrm{TM}} \colon \mathfrak{T} \to \mathfrak{S} \to \mathfrak{T}$	10,000]□ □ δω□ Η□ □ 🤅	1,00,000
Ψ□]∴±∴Τ	20,000	⇒ □ ∏ □∴±⊾[□ψ	50,000
θ>●<□ Τ υ⊄θδτ	3,70,000	$\square \square \}'' :: T$	5,000
$ @\exists T \phi \langle T \psi \Box \ T \ ^{TM} \langle \angle Z + \Box \ \lor @$	5,00,000	$\# \lfloor *' + \mid \Box \lor _ \therefore T' \therefore T$	
≤□ υ⊄θδτ	3,00,000		
υ∫□ εH□ ∴T	5,000		
□ ≥T□ &□ T∴T			
\Box TT Δ'' : T			
$\epsilon\delta\Box \ \checkmark :: T _:: T' :: T$	16,55,000		16,55,000

δ□ σℑΤῒυ″≥Τ϶

 $(\mu) > \bullet \& \Box \ T \epsilon \lor \rho] \theta \ \mathfrak{R} \lrcorner ' \phi \langle T T \psi \Box \ T \therefore \oplus \leq \Box \ \nu \theta T \epsilon T \Leftarrow + \equiv \theta \ \epsilon T] \phi \langle T T \ \# \lfloor *' + \# \langle \Box \ \exists \ \sigma \mathfrak{I} \\ \sqrt{.15,000}$

 $() | | \odot \exists T \varphi \langle T \psi \Box \ T \ \mathsf{TM} \langle \angle Z + | \Box \ \lor \oplus \leq \Box \ \exists \Box \ \varphi \big(\sqrt{\angle} + \equiv \theta \ \upsilon \not \subset \theta \delta \tau \ \sigma \Im \sqrt{.5,000}$

 $(\delta -) \sigma \Box \epsilon \therefore \delta - \theta | | \odot \exists T \phi \langle T \psi \Box T \therefore T \sigma \Im \sqrt{.25,000}$

 $\begin{array}{c} (\&\Box \) \ \epsilon T \sigma \Im \Delta'' \therefore \ \Re \lrcorner' \phi \langle TT \psi \Box \ T \therefore \Box \ |\prod |\Box \ \lor \theta \downarrow \ | \ \epsilon \sqrt{\ \Re \lrcorner' \phi} \langle TT \psi \Box \ T \therefore T \ \sigma \Im \sqrt{.10,00} \\ 0 \end{array}$